
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2023

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2230

Public Key Infrastructure and
its applications for resource-
constrained IoT

JOEL HÖGLUND

ISSN 1651-6214
ISBN 978-91-513-1696-3
URN urn:nbn:se:uu:diva-495320

Dissertation presented at Uppsala University to be publicly examined in Häggsalen,
Ångströmlaboratoriet, Lägerhyddsvägen 1, Wednesday, 15 March 2023 at 13:15 for the
degree of Doctor of Philosophy. The examination will be conducted in English. Faculty
examiner: Professor Andrei Gurtov (Linköping University).

Abstract
Höglund, J. 2023. Public Key Infrastructure and its applications for resource-constrained IoT.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 2230. 49 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1696-3.

The Internet of Things (IoT) is rapidly expanding and IoT devices are being deployed in
security-critical scenarios, such as in critical infrastructure monitoring and within e-health, and
privacy-sensitive applications in hospitals and homes. With this, questions of security and safety
become paramount. The overall theme of the research presented here is to bridge some of the
identified gaps in IoT security, with a particular focus on enabling Public Key Infrastructure
(PKI) functionality for constrained IoT devices. The contributions of this dissertation are made
through six research papers that address identified shortcomings and challenges. The focus is
on protocols, mechanisms, and efficient encodings rather than specific cryptographic solutions.
The work to improve the state-of-art regarding PKI for IoT includes enrollment, revocation and
trust transfer. We design and implement integrated lightweight certificate enrollment solutions
for IoT devices and new compact certificate formats. This brings the total communication costs
of session establishment and enrollment operations down to feasible levels for constrained IoT
devices. An improved design is made to benefit from application layer security, enabling end-
to-end communication capable of proxy traversal. To handle revocation of trust, we propose and
design lightweight certificate revocation. We show how significant performance improvements
compared with existing solutions can be made without sacrificing functionality or compromising
security. To address the long-time maintainability of IoT systems, we design a lightweight
schema for trust transfer, which allows control of IoT deployments to shift between service
providers in a highly automated manner.

In addition to improving PKI functionality, we propose mechanisms for secure storage and
updates, which complement and strengthen the overall IoT security landscape. We show that
standard-based application-layer security mechanisms can be extended to enable secure storage
and communication, reducing the memory required for cryptographic solutions and the latency
when sending sensor data onto the network. In our last contribution, we propose a design for
secure software updates. Based on the existing ACE framework, we use token-based access
control to fulfil the need for both authentication and authorisation security services.

We have been working with industry partners to share our work in the shape of new standards
for a better potential for industrial impact. In summary, several new building blocks required
to create, maintain and support secure PKIs capable of including constrained IoT devices are
proposed, forming important steps towards making IoT devices first-class Internet citizens.

Keywords: IoT, PKI, cybersecurity, security, asymmetric cryptography, Contiki-NG

Joel Höglund, Department of Information Technology, Box 337, Uppsala University,
SE-75105 Uppsala, Sweden.

© Joel Höglund 2023

ISSN 1651-6214
ISBN 978-91-513-1696-3
URN urn:nbn:se:uu:diva-495320 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-495320)

List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Joel Höglund, Samuel Lindemer, Martin Furuhed, and Shahid Raza.
“PKI4IoT: Towards public key infrastructure for the Internet of
Things”. In: Computers & Security 89 (2020). DOI:
https://doi.org/10.1016/j.cose.2019.101658

II Joel Höglund and Shahid Raza. “LICE: Lightweight certificate
enrollment for IoT using application layer security”. In: IEEE
Conference on Communications and Network Security, CNS 2021,
Tempe, AZ, USA, October 4-6, 2021. IEEE, 2021. DOI:
10.1109/CNS53000.2021.9705036

III Joel Höglund, Martin Furuhed, and Shahid Raza. “Lightweight
certificate revocation for low-power IoT with end-to-end security”. In:
Journal of Information Security and Applications 73 (2023). DOI:
https://doi.org/10.1016/j.jisa.2023.103424

IV Joel Höglund, Simon Bouget, Martin Furuhed, Göran Selander,
John Mattsson, and Shahid Raza. AutoPKI: Public Key Infrastructure
for IoT with Automated Trust Transfer. Submitted. 2023

V Joel Höglund and Shahid Raza. “BLEND: Efficient and blended IoT
data storage and communication with application layer security”. In:
2022 IEEE International Conference on Cyber Security and Resilience
(CSR). 2022, pp. 253–260. DOI: 10.1109/CSR54599.2022.9850290

VI Joel Höglund, Anum Khurshid, and Shahid Raza. “AC-SIF: ACE
Access Control for Standardized Secure IoT Firmware Updates”. In:
International Conference on Emerging Security Information, Systems
and Technologies. 2022

Reprints were made with permission from the publishers.

Additional Publications

Peer reviewed papers

• Joel Höglund, Shahid Raza, and Martin Furuhed. “Towards Automated
PKI Trust Transfer for IoT”. in: 2022 IEEE International Conference on
Public Key Infrastructure and its Applications (PKIA). 2022, pp. 1–8.
DOI: 10.1109/PKIA56009.2022.9952223

• EunSeong Boo, Shahid Raza, Joel Höglund, and JeongGil Ko. “FDTLS:
Supporting DTLS-Based Combined Storage and Communication Se-
curity for IoT Devices”. In: 16th IEEE International Conference on
Mobile Ad Hoc and Sensor Systems, MASS 2019, Monterey, CA, USA,
November 4-7, 2019. IEEE, 2019, pp. 127–135

• Ye Liu, Thiemo Voigt, Niklas Wirström, and Joel Höglund. “EcoVibe:
On-Demand Sensing for Railway Bridge Structural Health Monitoring”.
In: IEEE Internet of Things Journal 6.1 (2019), pp. 1068–1078. DOI:
10.1109/JIOT.2018.2867086

• Shahid Raza, Simon Duquennoy, Joel Höglund, Utz Roedig, and Thiemo
Voigt. “Secure communication for the Internet of Things—a compari-
son of link-layer security and IPsec for 6LoWPAN”. in: Security and
Communication Networks 7.12 (2014), pp. 2654–2668. DOI: https:
//doi.org/10.1002/sec.406

Standardisation work

• John Preuß Mattsson, Göran Selander, Shahid Raza, Joel Höglund, and
Martin Furuhed. CBOR Encoded X.509 Certificates (C509 Certificates).
Internet-Draft draft-ietf-cose-cbor-encoded-cert-05. IETF Secretariat,
2023. URL: https://www.ietf.org/archive/id/draft-ietf-
cose-cbor-encoded-cert-05.txt

Contents

Part I: Dissertation Summary . 11

1 Introduction . 13
1.1 Research Challenges . 15
1.2 Methodology . 17
1.3 Contributions . 17
1.4 Dissertation Structure . 19

2 Background . 22
2.1 Feasibility of Security Protocols . 22
2.2 PKI Concepts . 23
2.3 Communication Protocols for Lossy Wireless Networks 24
2.4 Security Standards and IoT . 25

3 Summary of Papers . 28
3.1 Paper I . 28
3.2 Paper II . 29
3.3 Paper III . 30
3.4 Paper IV . 31
3.5 Paper V . 32
3.6 Paper VI . 33

4 Related Work . 34
4.1 Certificate Based Authentication . 34
4.2 Revocation, and Efficient Techniques for Revocation List

Encoding . 35
4.3 Ownership Transfer . 36
4.4 Secure Storage . 36
4.5 Secure Software Updates . 37

5 Conclusions and Future Work . 38
5.1 Conclusions . 38
5.2 Future Challenges and Future Work . 38

6 Summary in Swedish . 41

Bibliography . 44

Acknowledgement

Personal Acknowledgements

I would like to thank my main supervisor Shahid Raza for supporting me along
the journey of my dissertation work and sharing his insights into cybersecu-
rity, including many interesting discussions around security topics. My co-
supervisor Thiemo Voigt for feedback and academic insights. My closest man-
ager Joakim Eriksson for being a supportive unit leader. My co-authors Simon
Bouget, Anum Kurshid and Samuel Lindemer, and our industry partners Mar-
tin Furuhed from Nexus Group and Göran Selander and John Mattsson from
Ericsson for good collaborations. My colleagues, current and former, at both
the Connected Intelligence and the Cybersecurity unit at RISE for their peer
support, Niclas, Nicolas, Zhitao and many more. My thesis students whom I
learnt a lot from, through supervising them. All of my RISE colleagues at the
Kista office, for creating an enjoyable work environment in general and for a
great variety of lunch discussions in particular. The people at the department
of Information Technology at Uppsala University, who cared also for indus-
try doctoral students. The management and lab leaders of SICS, including my
first manager Sverker Janson, who together created the institute and workplace
that I joined many years back, a work environment that made us feel like we
were between academia and industry in a very positive way, which inspired
me to stay and add my contributions to the field.

I want to express my gratitude to my family, my parents, Boel and Åke,
who taught me that there are always more things to be learned for someone
who is curious, and who together with my sister Rakel, always have supported
me and my choices in life. And shown that one doesn’t necessarily have to
take the shortest path between degrees.

Finally, I am grateful for my blues dance community friends, who have
offered the best possible complement to my academic endeavours, aiding the
movement of thoughts by the movement of the body.

Funding Acknowledgements

The research done in this thesis has been funded primarily through the Swedish
Foundation for Strategic Research (SSF) industrial PhD program. The work
in this thesis is also funded by the following EU H2020 projects SECREDAS
(GA No. 783119), ARCADIAN-IoT (GA No. 101020259), CONCORDIA
(GA No. 830927) and by Vinnova through the STACK project (GA No.
P123800021).

Joel Höglund
Stockholm, January 2023

List of Acronyms

ACE Authentication and Authorization for Constrained Environments
AS Authorization Server
ASN.1 Abstract Syntax Notation One
CA Certificate Authority
CoAP Constrained Application Protocol
CMS Certificate Management System
COSE CBOR Object Signing and Encryption
CRL Certificate Revocation List
CWT CBOR Web Token
DTLS Datagram Transport Layer Security
EDHOC Ephemeral Diffie-Hellman Over COSE
EST Enrollment over Secure Transport
IETF Internet Engineering Task Force
IKE Internet Key Exchange
MAC Message Authentication Code
OCSP Online Certificate Status Protocol
OIDs object identifiers
OSCORE Object Security for Constrained RESTful Environments
PKI Public Key Infrastructure
PQC Post-Quantum Cryptography
PSK Pre-shared Key
RATS Remote ATtestation procedureS
RP Relying Party
RS Resource Server
SUIT Software Updates for Internet of Things
TCP Transmission Control Protocol
TEEs Trusted Execution Environments
TLS Transport Layer Security
UDP User Datagram Protocol
VA Validation Authority
WSN Wireless Sensor Network

Part I:
Dissertation Summary

1. Introduction

The Internet of Things (IoT) has been hyped as a concept for more than a
decade, but the last couple of years have shown a rapid increase in actual de-
ployments and everyday usage. IoT solutions are increasingly used in security-
critical scenarios such as infrastructure monitoring and within e-health, as
well as in privacy-sensitive applications in hospitals and homes. With the fast
growth of IoT deployments, questions of security and safety while maintaining
scalability become paramount.

Media attention has been given to cybersecurity attacks on critical infras-
tructure, such as the STUXnet attack [54]. Multiple reports of potential pri-
vacy endangerment have been made regarding security flaws in smart assis-
tants [4] and other connected devices in homes, such as toys [19]. In addition,
IoT devices that do not have any security critical role can be hacked and, once
an attacker has gained control of a number of devices forming a botnet, in
turn, used to attack other Internet targets [5]. These examples have helped
to increase the awareness of new vulnerabilities when the world is becoming
increasingly connected and of the need for strong cybersecurity.

In the early days of IoT, security solutions were absent, insufficient, or, at
best provided as custom-made proprietary solutions, creating vendor lock-ins
and preventing large-scale interoperability. To a large degree, the lack of se-
curity solutions, specifically standard-based security solutions, was due to re-
source constraints. In parallel, there has been an interest both from academia
and industry in bringing standards to constrained devices, due to its poten-
tial benefits. With suitable open standards, it becomes easier to deploy and
manage IoT devices also in heterogeneous systems, it opens up markets for a
more extensive diversity of service providers and it contributes to raising the
programming abstraction levels by offering higher-level interfaces and APIs
build on top of the standardised lower protocol layers.

Starting before 2010, there were embedded wireless platforms capable of
running the standard IP, with extensive optimisations, which was an important
step towards the Internet of Things that we see today [18]. A typical example
of an early platform is the widely used Tmote Sky device. It has an 8 MHz
Texas Instruments MSP430 microcontroller, 10 kB RAM, and 48 kB flash
memory [40]. This setup is sufficient for supporting optimised IP-based com-
munication, and in addition, it has been used in numerous lab experiments with
different security solutions. But the memory and the computational capacity
needed to support standard-based security solutions, which meet today’s strin-
gent requirements and still have room for an actual application, are not there.

13

Looking at present-day IoT platforms, there now are 32-bit ARM Cortex-M4
based CPUs, such as the nRF52840, with 256 kB RAM and 1 MB flash [41].
This has expanded the possibilities for adapting advanced security solutions
while still being practically usable. These resource-constrained devices with
from 50 kB of RAM, which should be prepared to operate on limited battery
power for an extended duration of time, belong to the so-called class 2 type of
devices, as defined in “Terminology for Constrained-Node Networks” by the
Internet Engineering Task Force (IETF) [11].

Within the broad scope of IoT, two disparate trends can be seen. One is
the development of really constrained devices, for example, using passive
radios that transmit through passive reflection and modulation of incoming
RF signals (so-called backscatter) or supported by energy harvesting mecha-
nisms [57]. These devices will always need to rely on more powerful devices
to handle important security aspects.

The other trend is the development of more capable IoT devices, where
it is possible to perform advanced crypto operations while maintaining low
power consumption. The work presented here focuses on these, compared
with backscatter devices, powerful but still constrained devices. There are
still several constraints regarding computational resources, available energy,
and communication capacity to adhere to. General constraints can result from
an overall desire to keep costs low, energy budgets will need to be kept while
operating on batteries, and bandwidth limitations will remain, especially when
operating in harsh environments with radio noise. An important observation
is that while the trend towards stronger computational capabilities is likely to
continue, the mentioned motives for keeping resource usage at a minimum
will still be valid.

To go beyond custom-made proprietary security solutions and avoid creat-
ing completely isolated IoT subnetworks, IoT security systems should benefit
from the solutions already developed, tested, and used on the rest of the In-
ternet. One of the core security services is authentication, the act of verifying
the identity of someone you want to interact with. Thanks to developments
in asymmetric cryptography already during the 1970s, it has been possible to
create a system with public-private key pairs, where the public keys can be
freely distributed. By knowing the public key of a user or device, another user
can validate whether a signature was made by the corresponding private key.
Through encapsulating public keys in digital certificates, data structures that
are signed by a trusted party, it becomes possible for two parties to directly
and securely authenticate each other without an external third party, as long as
the certificate signatures can be traced back to a shared trusted root. The com-
plete system needed to manage the authentication services and their artefacts,
the certificates, keys, policies, and roles, forms a PKI.

This system, with public keys encapsulated in signed certificates, has evolved
to form the basis of almost all Internet communication. For human Internet
users, these details are typically hidden. The web browsers come with a set

14

of installed trusted root certificates. The root certificates allow the browser
to authenticate any server with a certificate issued and signed by a Certificate
Authority (CA), as long as the signature of the CA can be traced back to one
of the already trusted roots.

Existing PKI solutions have been too complex and resource-consuming for
IoT devices to handle. Given the large potential advantages of including IoT
devices in PKIs, PKI for IoT has been an interesting area of research. As can
be seen reflected in the title of the thesis, “Public Key Infrastructure and its
applications for resource-constrained IoT”, a substantial part of the research
work has been focused on enabling PKI functionality for IoT devices belong-
ing to the above-mentioned class 2 type of constrained devices. PKI mecha-
nisms are needed for most of the IoT lifecycle stages, from the initial deploy-
ment, over normal operations, to the final decommissioning and revocation of
capabilities. The overall theme of the research conducted as part of this disser-
tation has been to bridge some of the identified gaps in IoT security, with the
ultimate goal to bring IoT devices closer to being first-class Internet citizens.

The emphasis has been on protocols, procedures, mechanisms, and efficient
encodings rather than specific cryptographic solutions. Examples include in-
vestigating and proposing solutions that utilise Constrained Application Pro-
tocol (CoAP) over Datagram Transport Layer Security (DTLS) rather than
HTTP over Transport Layer Security (TLS) and make use of the shifts towards
security for layers higher up in the protocol stack, which enables more com-
plete end-to-end security and allows more fine-grained access control. In par-
allel with the PKI development, other secure services that rely on lightweight
key management have been investigated. An overview of the thesis contribu-
tions in their context is shown in figure 1.1.

By adhering to the latest and upcoming IoT standards and proposing new
ones, the developed solutions are ensured to be compatible with what is con-
sidered by academia and industry through the standardisation bodies to be
relevant best cryptographic practices for the future.

The overall goal can be seen through the decomposition into the research
challenges presented below.

1.1 Research Challenges
Research Challenge 1, RC1: Current PKI enrollment solutions developed for
the regular Internet are infeasible for IoT because of the resource constraints
present in IoT. The challenge is providing sufficiently lightweight IoT alter-
natives which also fit with existing echo systems. In practice, this means to
analyse the needs of IoT in relation to PKI services, to find the critical func-
tional subsets needed to provide meaningful PKI mechanisms, and to provide
the desired services while maintaining the high security guarantees expected
from modern PKIs.

15

Research Challenge 2, RC2: With increasing demands for absolute end-
to-end security, older security solutions have become insufficient since previ-
ous transport layer protocols do not provide protection for individual appli-
cations or proxy traversal. There have been proposals for application layer
communication protocols suitable for IoT (EDHOC and OSCORE [52, 53]),
which need to be complemented with secure key distribution protocols to be
independently usable for PKI. The challenge is to adapt and make efficient use
of new security building blocks to provide the desired end-to-end enrollment
functionality in a resource-efficient manner.

Research Challenge 3, RC3: Digital certificates come with a prescribed
valid lifetime, but computers and devices can be compromised at any time.
A revocation service that allows checking the validity of certificates is an ex-
pected PKI service and is inevitable for any security-critical scenario. Exist-
ing solutions such as Certificate Revocation List (CRL) usage and the Online
Certificate Status Protocol (OCSP) have not been developed for recently stan-
dardised IoT formats and protocols. The challenge is to move beyond existing
solutions for certificate revocation, which are infeasible for IoT because of
overhead both in terms of memory/storage and communication.

Research Challenge 4, RC4: For IoT systems to be economically valu-
able for all of their expected lifetimes, the long-time maintainability of the
IoT deployments needs to be addressed. This includes mechanisms for secure
change of control and ownership between different system owners or opera-
tors. To support interoperability and minimise the adaption needs of service
providers the solution should be based on PKI mechanisms as far as possible.
Because of the scale, the solution needs to operate with minimal human inter-
vention. The challenge is designing interoperable mechanisms for performing
the transfer of IoT control in a highly automated yet secure manner.

Research Challenge 5, RC5: For IoT systems, where storing data securely
inside the device is necessary, a separate set of potentially heavy-weight crypto
mechanisms is needed. For IoT devices, having two separate crypto mecha-
nisms for storage and communication causes unacceptable overhead. In ad-
dition, the crypto operations needed when data at rest need to be decrypted
and encrypted again before being sent to the network incurs undesired de-
lays. Given lightweight solutions for communication security, it ought to be
possible to do better. The challenge is providing a solution that incurs min-
imal overhead for IoT devices, keeps well-tested security properties intact,
and does not compromise standard compliance and interoperability when the
stored data is sent.

Research Challenge 6, RC6: Another mechanism that is needed for the
long-term maintenance of deployed IoT systems is functionality for secure

16

updates. The update mechanism itself needs to be secure, or else it could
easily be turned into an attack vector. Hence the solution cannot rely on au-
thentication alone. The challenge is solving the secure update authorisation
problem for IoT in a resource-efficient, scalable and interoperable manner.

1.2 Methodology
The research conducted as part of the dissertation has mainly been experimen-
tal. The three recurring steps on a general level are: formulating a research
question based on an exploration of the research challenge, the design of a po-
tential solution, and experimental validation of the stated solution. Applied to
the IoT security domain, this corresponds to: The current gaps in, and short-
comings of, existing IoT security solutions have been investigated, including
the exploration of possible partial solutions which could serve as input. After
the investigation stage, a more concrete problem has been formulated as the
basis for new solutions. New protocols and mechanisms to fit the identified
gaps have been designed. The designs have been either prototyped or more
completely implemented to the point that they can be evaluated based on the
identified security and resource usage requirements and, whenever possible,
compared with the state-of-art, using relevant IoT hardware.

For the concrete hardware experiments, mainly two representative IoT plat-
forms have been used. For Paper I, Paper III and Paper V, Arm Cortex M3-
based devices, Zolertia Fireflies, have been used. The platform provides a 32
MHz MCU, 32 kB RAM and 512 kB of Flash. For Paper II and Paper IV, the
newer nRF52840-DK platform was used. In general, the experiments test a
subset of the full functionality expected of a complete IoT deployment, where
the security solutions form a part. Therefore it has been important to find
relevant target platforms where the evaluations show the possibilities to also
run applications in parallel with the tested security mechanisms. To provide
the server side in experiments where IoT devices interact with more powerful
Internet devices, both Raspberry Pi 3 devices and regular desktop computers
have been used, either filling the role of an edge device or a regular Internet
server.

1.3 Contributions
The recurring theme has been to improve the state-of-art for IoT security. Be-
low is the description of how the work has addressed the research challenges
presented above.

Lightweight Certificate Enrollment for IoT

In Paper I we designed and implemented an integrated lightweight certificate
enrollment solution for IoT devices, which supports fully automated protec-

17

tion of enrollment sessions. In addition, we provided IoT certificate profiling
with domain specific certificate compression mechanisms and lightweight en-
coding of X.509 certificates. Together the improvement brings the total com-
munication costs of session establishment and enrollment operations down to
levels that are feasible for constrained IoT devices. The proposed solutions
were tested and evaluated using relevant target IoT hardware.

In Paper II a new design was made to enable enrollment for devices using
the new and latest proposed application-layer security communication solu-
tions, for usage with OSCORE and EDHOC. We designed, implemented, and
evaluated LICE (LIghtweight Certificate Enrollment for IoT using application
layer security). We advanced the usage of efficient protocol data encodings by
proposing optimised CBOR encodings for the EST enrollment operations. We
demonstrated that a complete key establishment and certificate enrollment data
exchange can be brought down to 800 bytes of data. This is less than a third
of the data being transferred compared with existing EST-coaps solutions. By
utilising application layer security solutions, the enrollment protocol follows
upcoming standards and can traverse proxies, achieving real end-to-end se-
curity. In addition, the functionality is required to avoid already constrained
devices needing to support DTLS and OSCORE in parallel.

Through these contributions we have addressed RC1 and RC2.

Lightweight Certificate Revocation

After a detailed analysis of the existing OCSP protocol specification, we pro-
posed and designed TinyOCSP in Paper III as a response to the identified
RC3. TinyOCSP leverages recent IoT standards and is a lightweight revoca-
tion alternative to the original OCSP. We showed how significant performance
improvements can be made without sacrificing functionality or compromising
security.

We implemented the protocol for relevant state-of-the-art IoT hardware
with low-power radio communication, in parallel with the original OCSP, and
evaluated the performance benefits in terms of total energy usage and commu-
nication overhead. In addition, we proposed CRL compression mechanisms
using Bloom filters. We analysed and calculated the conditions where Bloom
filter compression is beneficial, verified the theoretical results through simula-
tions and present the optimal parameters.

Low-latency Secure Storage and Communication

Through the design of BLEND in Paper V we address RC5. We showed that
standard-based application layer security mechanisms can be extended to en-
able a solution for both secure storage and secure communication. The design
is able to reduce the memory required by preventing the need for separate
crypto management for storage and communication, and to reduce the latency
when sending sensor data to the network. The system has been implemented
and evaluated to show its suitability for IoT.

18

Automated Trust Transfer

To address the challenges of long-time maintainability of IoT systems (RC4)
we designed AutoPKI, a lightweight schema for trust transfer in Paper IV,
which allows control of IoT deployments to shift between service providers
in a highly automated manner. By using the proposed application layer secu-
rity enrollment solutions, and signed token concepts from the Authentication
and Authorization for Constrained Environments (ACE) framework, both the
added overhead for IoT devices and the needed modifications for servers al-
ready using PKI for IoT solutions are kept minimal.

The limited overhead of the proposed solution was verified through a fea-
sibility study using a prototype implementation for constrained IoT devices.
A security analysis was done to demonstrate that the schema meets the stated
security requirements.

Automated Secure IoT Software Updates

To address RC6 we have proposed AC-SIF, a firmware manifest design and
update architecture in Paper VI. Based on the ACE framework and the recom-
mendations for the upcoming Software Updates for Internet of Things (SUIT)
standards, our solution can fulfil the need for both authentication and autho-
risation functionality. Through the use of CBOR Web Tokens for Proof-of-
Possession, we are able to decouple the IoT devices from having to keep track
of a potentially large number of update providers, contributing to automated
secure updates for IoT.

Through the dissertation work done and presented here, several new building
blocks needed to create, support, and maintain secure PKIs which can span
across constrained IoT devices and full-scale Internet infrastructure have been
proposed. Important steps towards making IoT devices first-class Internet cit-
izens have been taken.

While the challenges we have addressed always are meant to improve the
state-of-art from an academic standpoint, we have also strived to include re-
quirements relevant to the industry. For the core PKI contributions presented,
the solutions have been validated with our industry partners to be in line with
the expected upcoming needs of certificate authorities. In addition, we have
been working together with industry partners to share our work in the shape
of new standards, for it to have a better potential for industrial impact.

1.4 Dissertation Structure
The two parts of the dissertation are disposed within the following structure:
Part I contains an extensive summary of the dissertation work, subdivided into
six chapters. In Chapter 2, I present and discuss background information about
the basis of this dissertation. In Chapter 3, the six publications constituting

19

the core of my work are summarised. An overview of related work is given in
Chapter 4. In Chapter 5, I present some concluding remarks and an outlook
on future challenges and possible continuations of the work. Finally Chapter 6
contains a high-level summary in Swedish. Part II contains a reprint of the six
papers included in the dissertation.

20

Certificate
Authority

Validation
Authority

Secure
storage

LICE

PKI4IoT
AC-SIF

IoT service provider /
software update server

AutoPKI

Secure updatesCertificate management
PKI4IoT LICE

Revocation

IoT end-users

Authentication, authorization & secure communication
Revocation AC-SIF

BLEND

AutoPKI

IoT server side

Constrained IoT device

AutoPKI

Figure 1.1. Public Key Infrastructure and its applications for resource-constrained
IoT. The diagram presents a high-level view of the dissertation contributions in their
IoT and server context. The interactions between servers are not shown; for instance,
the compound protocols AutoPKI and AC-SIF involve more than one server type in
their server-side operations.

21

2. Background

This chapter provides background on the security mechanisms and some of the
most important standards and their underlying technologies which are required
for achieving the results in this dissertation.

2.1 Feasibility of Security Protocols
An essential basis for modern PKI solutions is the existence of secure and
authenticated key exchanges. An influential work in this area is the work
around the so-called SIGMA family of protocols, described in Krawczyk’s
paper from 2003 [34].

The starting point for the SIGMA work is the following three requirements:
First, to provide perfect forward secrecy through a Diffie-Hellman-based se-
cure key-exchange protocol. Second, to provide public-key authentication
through the use of digital signatures. Finally, to optionally provide identity
protection for the protocol participants. One important observation is that the
identity protection functionality can be in conflict with the authentication of
protocol participants. To authenticate yourself you need to some degree to
reveal your identity, which you might be unwilling to do unless you already
trust your counterpart. As a consequence, different protocols might do differ-
ent trade-offs, for instance, which party is first to reveal its identity, affecting
the number of protocol messages needed to achieve the authentication phase.

Perfect forward secrecy is the condition that old secure session keys estab-
lished between two parties, and later erased, should be protected and impossi-
ble to regenerate by an attacker, even if any long-term secret belonging to the
parties has been revealed. The SIGMA work gives theoretical underpinnings
to the security guarantees of protocols used for PKI, from the older Internet
Key Exchange (IKE) [30] to the recent EDHOC [53] key-establishment pro-
tocol.

When constructing compound security services, these fundamental secu-
rity services are assumed to act as reliable building blocks such that the se-
curity analysis can focus on if and how the composition might introduce new
weaknesses. At the same time, it should highlight the need to form contin-
gency plans in the event that any weakness is found in the fundamentals of a
cipher suit or a particular implementation. In those cases, the affected soft-
ware components must be immediately replaced. Alternatively, if the secu-
rity breach has already happened, the trust in the affected entities should be

22

revoked, shielding them from other parts of the system. The threat of discov-
ering new vulnerabilities highlights the need for both secure update solutions
and revocation services feasible for IoT.

2.2 PKI Concepts
This section expands on constituent parts and services which are essential for
the creation and operation of a PKI. A starting observation is that an overar-
ching goal of a PKI is to enable actors to establish trust between each other,
through the PKI security services.

Security Services and PKI

In order to establish and maintain trust from a system perspective, two essen-
tial security services are required: authorisation and authentication. Authori-
sation ensures that actors are only able to perform actions for which they are
authorised. To establish an authorisation service, a secure authentication ser-
vice is a prerequisite. This is because the authorisation of actions requires the
authentication of actors. The primary function of an authentication service is
to establish a trustworthy binding between an entity and a public key.

Establishment of Trust in PKIs

Public Key Infrastructures utilise authentication based on publicly accessible
keys encapsulated within digital certificates. These certificates are issued by
a CA, which acts as a trusted third party that verifies the identity of the entity
requesting the certificate. The CA, in turn, is identified by its own certificate,
which can either be self-signed or signed by another CA, creating a hierarchi-
cal structure with a self-signed root CA at the apex. This system enables the
verification of certificate chains up to the top nodes, which are assumed to be
trusted [25].

To be able to establish trust in these certificate chains, the authenticating
party must have access to the self-signed root node certificates. For IoT de-
vices, this necessitates the inclusion of the necessary root certificates in a trust
store through either factory pre-programming or explicit secure and trusted
enrollment operations. In standard computers interacting with the Internet
through web browsers, these PKI operations are contained and hidden through
lists of trusted root certificates kept and maintained by the web browsers, act-
ing as PKI proxies between clients and servers.

The communication needs of the IoT device, and the complexity of the
CA hierarchies will determine how many root certificates must be provided to
the device trust store. For performance reasons, additional certificates can be
added to later enable authentication through certificate references, for proto-
cols where this is possible, in which case it is sufficient for the communicating
parties to only send hashes of certificates.

23

X.509 Certificates

The standard format for how to encapsulate the public keys needed for conven-
tional PKIs is X.509 [14]. The latest version, v3, is the most flexible, allowing
extensions that can be used to specify the desired capabilities or constraints
that should be associated with the certificate, such as whether it belongs to a
CA, or which key usage operations should be permitted. The expected X.509
encoding format is Abstract Syntax Notation One (ASN.1), together with
object identifiers (OIDs) to label and identify the many fields needed. ASN.1
is an old standard that is defined to be both human and machine-readable [58]
As a result, the resulting encoding is not compact, but rather lengthy, where
the headers of nested fields grow rapidly in size.

2.3 Communication Protocols for Lossy Wireless
Networks

The work presented in this thesis is primarily concerned with protocols and
mechanisms which operate on the transport layer or above in the network pro-
tocol stack. Yet many of the constraints which affect wireless IoT devices are
due to limitations stemming from the physical radio medium, communicat-
ing over a Wireless Sensor Network (WSN), and the resulting impact on the
protocol stack.

UDP and Lower Network Stack Layers

Below the application layer the User Datagram Protocol (UDP) is the predom-
inant protocol to be used in IoT for the transport layer. It has lower resource
usage compared with the Transmission Control Protocol (TCP), and by leav-
ing out the functionality to handle data losses, the higher layers can choose
when resending is really needed, making UDP better suited for constrained
lossy networks. For the network layer, especially for IoT devices that should
be globally available, IPv6 is the alternative that thanks to its large address
space avoids address scarcity, and can operate without the need for NAT solu-
tions [15].

6LoWPAN is used for wireless IoT devices communicating over 802.15.4
radio networks, where the maximum radio packet size is only 127 bytes. The
protocol handles fragmenting and reassembly of IP packets sent over lossy
radio links [26]. Since 6LoWPAN does not support already fragmented IP
packets, higher layers need to ensure that data fits within a single datagram.

Constrained Application Protocol (CoAP)

The lightweight alternative to HTTP for IoT is the Constrained Application
Protocol (CoAP) [13]. It is designed for constrained devices, and since it
is targeting machine-to-machine communication, it does not need to include

24

human-readable tags. It has been augmented by block-wise transfers, which
allows CoAP implementations to handle sending and receiving larger chunks
of data without relying on IP fragmentation.

2.4 Security Standards and IoT
The security standards described below are either existing solutions, improved
solutions for IoT, or new standards primarily designed for IoT. This thesis
relies on the existence of these protocols for building the PKI for IoT, for
secure software updates for IoT, and for secure storage and communication of
IoT data.

2.4.1 PKI Protocols
Enrollment over Secure Transport (EST)

The EST protocol is a commonly used standard for certificate management.
It specifies the use of Certificate Management System (CMS) messages over
HTTPS for secure certificate enrollment [45]. The minimum functionality
required by EST is the ability to securely transfer the following protocol data
between a client and a certificate authority: CA certificates, which are used
to establish trust between the client and other CAs. These certificates are
typically stored in a client-side trust anchor database, commonly referred to
as a trust store. The transfer of CA certificates is crucial to enable secure
communication between the client and server with certificates signed by other
CAs. Certificate enrollment requests from clients to the CA, and the resulting
enrolled certificate back to the client.

Online Certificate Status Protocol (OCSP)

OCSP is an online alternative to using certificate revocation lists, which al-
lows clients to check the status of a certificate of a server before deciding to
establish a secure session with it [50]. A client, in OCSP terminology called
Relying Party (RP), sends a request to a Validation Authority (VA) which
replies with signed certificate status information. The messages are ASN.1-
encoded and transported over HTTP. If the protocol is used without an op-
tional cryptographic nonce bound to a specific request, an intercepted old and
no longer valid reply could be re-sent by an attacker, thus creating a replay
attack. With a nonce included in the exchange, the attack can be prevented.

2.4.2 Transport and Application Layer Security Solutions
Datagram Transport Layer Security (DTLS)

DTLS is a well-established alternative to TLS for scenarios when it is advan-
tageous to run the secure session on top of UDP instead of TCP. The DTLS

25

specification encompasses the functionality both to perform key establishment
using either Pre-shared Key (PSK) or certificate-based asymmetric cryptogra-
phy, and to encrypt/decrypt messages using symmetric cryptography in the
established secure session [48]. The certificate-based version is used to secure
the communication in Paper I, with a special focus on the profile of DTLS
specifically addressing the needs of IoT [56]. Since the protocol operates on
the transport layer, data from the CoAP layer is encrypted in full, making it
impossible for a proxy to handle the message without being able to fully de-
crypt it. The data decryption will reveal also the application layer data and
break end-to-end security, despite the proxy only needing access to certain
CoAP parameters.

OSCORE and EDHOC

Object Security for Constrained RESTful Environments (OSCORE) is a re-
cently standardised application-layer protocol for the protection of CoAP mes-
sages [52]. It is designed to be lightweight and suitable for IoT. Since the
protocol works with data on the application layer it enables secure data com-
munication between CoAP devices over proxies also with HTTP endpoints,
through CoAP-to-HTTP mapping operations. The protocol needs to be com-
plemented with functionality for key establishment, which is not part of the
OSCORE specification.

Ephemeral Diffie-Hellman Over COSE (EDHOC) is a proposed key ex-
change protocol, at the time of writing in the last stages of review before
being accepted as an RFC. A design goal is to be useful for constrained sce-
narios [53]. The data exchange can be extremely compact, needing only three
messages to perform mutual authentication and establish shared key material
in its minimal form. A clear use case is to establish key material for an OS-
CORE security session, but the low overhead can make it suitable for other
mutual authentication scenarios.

These application layer protocols are used as building blocks in Paper II,
Paper IV and Paper V.

2.4.3 Efficient Data Encodings and the ACE Framework
Concise Binary Object Representation (CBOR)

CBOR is a data serialisation format designed with the aim to provide a com-
pact representation of data while minimising resource overhead during the
encoding and decoding process [12]. It supports a variety of basic data types,
as well as maps and arrays. Additionally, it allows for the representation of
binary byte strings, enabling its use as a wrapper for various forms of bi-
nary data. CBOR is meant to be self-describing, in which case no pre-defined
schema is needed during the decoding process.

26

Authentication and Authorization for Constrained Environments (ACE)

ACE is a framework for IoT, designed to provide authorisation for devices
wanting to access resources from servers. It uses new compact schemes and
protocols for data encoding and crypto operations, CBOR, COSE, OAuth 2.0
and CWTs [51]. A client which wishes to access protected resources requests
an access token from an Authorization Server (AS), which, if the request is au-
thorised, encodes the granted permissions in a CBOR Web Token (CWT). A
token is a serialised data object, used to encode claims about a subject, which
are guaranteed by an issuer. CWTs use the CBOR Object Signing and Encryp-
tion (COSE) format specification for encryption, signatures and to augment
data with a Message Authentication Code (MAC). The authorisation server
binds the token to secret key material known by the client. The token can then
be presented to the Resource Server (RS) by the requesting device [29]. The
framework is included in the solution proposed in Paper VI.

27

3. Summary of Papers

3.1 Paper I
Joel Höglund, Samuel Lindemer, Martin Furuhed, and Shahid Raza. “PKI4IoT:
Towards public key infrastructure for the Internet of Things”. In: Computers
& Security 89 (2020). DOI: https://doi.org/10.1016/j.cose.2019.
101658

Summary
In this paper, we propose the combination of DTLS with an early version of the
compact CBOR encoded certificates, together with tests of the new lightweight
enrollment protocol, EST-coaps. The non-destructive compact certificate en-
coding allows existing CAs to issue standard X.509 for IoT devices. The
certificates are converted to and from the compact CBOR format by a radio
gateway. The gateway acts as an edge device on constrained networks, in an
integrity-preserving way, which does not require the device performing the
certificate conversion to be trusted. We implemented these protocols within
the Contiki embedded operating system and evaluated their performance on
an Arm Cortex-M3 platform. The results showed that it is possible to intro-
duce the compact certificate encoding in a way transparent to the server side.
The IoT device can decrease the amount of data needed to be sent during the
costly handshake operation, which is a large benefit in lossy radio networks.

Reflections
This work marks an important step toward bringing Internet-grade security to
IoT devices, by creating the conditions for moving from pre-shared keys to
digital certificates, and demonstrating that it is practically feasible.

This work gave me valuable insights into the dependency of security solu-
tions on the lower layers of the stack, the challenges with lossy radio networks,
and the value in trimming down every possible byte needed to be sent over the
radio. If I had redone the presentations in the paper today, I would have pre-
sented the timing graph with a focus on the median rather than the mean. The
mean was clearly affected by occasional packet losses and obscured the dif-
ferences between the test cases. This we improved upon for the following
Paper II.

28

My Contribution
I am the main author of the paper. I started the work with an existing prototype
EST implementation, which was conceptualised and formulated by Shahid
Raza. I designed and implemented the combined system where lightweight
certificate handling was integrated and tested and evaluated the entire system.
All the experiments were performed by me, and I wrote the first version of the
manuscript all the paper authors took part in refining.

3.2 Paper II
Joel Höglund and Shahid Raza. “LICE: Lightweight certificate enrollment for
IoT using application layer security”. In: IEEE Conference on Communica-
tions and Network Security, CNS 2021, Tempe, AZ, USA, October 4-6, 2021.
IEEE, 2021. DOI: 10.1109/CNS53000.2021.9705036

Summary
In this paper, we designed and evaluated a new compact enrollment proto-
col utilising the recent advancements in application layer security. Through
new and proposed standards, it is possible for IoT devices to implement more
lightweight solutions for application layer security which has the potential to
enable real end-to-end security, capable also of traversing proxies. We pre-
sented LICE, which fills an important missing niche before certificate-based
security can be used with new IoT standards such as OSCORE and EDHOC.
We implemented the protocol on IoT hardware and evaluated it using low-
power radio devices in representative noisy network environments. Compared
with the previous state-of-art using EST-coaps over DTLS, when using LICE
the complete combined secure session establishment and enrollment opera-
tions can be completed using less than 800 bytes, less than one-third of the
data used for EST-coaps.

Reflections
The proposed EDHOC key establishment protocol has at the time of writing
still not been completely finalised as a standard, and the latest draft version
contains some differences regarding how auxiliary data is transported in the
handshake messages. Details of our implementation would need to be updated,
but the total differences in cryptographic operations performed are minor and
unlikely to change the performance more than marginally.

We have used the crypto algorithms recommended by the standards to be
supported for the target IoT platforms. It deserves to point out that while these
recommendations can be upgraded to point to stronger crypto suits with longer
key lengths, the same protocol can still be utilised.

29

My Contribution
I am the main author of the paper. I am the main responsible for the design,
and I have done the implementation and performed the experiments. I wrote
the first version of the manuscript. The work was done under the active super-
vision of Shahid Raza.

3.3 Paper III
Joel Höglund, Martin Furuhed, and Shahid Raza. “Lightweight certificate
revocation for low-power IoT with end-to-end security”. In: Journal of Infor-
mation Security and Applications 73 (2023). DOI: https://doi.org/10.
1016/j.jisa.2023.103424

Summary
In this paper, we designed and evaluated a lightweight alternative to the state-
of-art concerning certificate revocation status checking. This is a required
functionality in a PKI for IoT, to allow also constrained devices to ensure
that a device with a given certificate is still to be trusted. We implemented
the Online Certificate Status Protocol (OCSP) on constrained IoT hardware,
as it is the most used standard for certificate validation on the Internet. This
showed that the protocol has too high of a resource overhead for the target
IoT environments. As a solution, we developed and implemented TinyOCSP,
a lightweight alternative that utilises compact IoT protocols such as CoAP
and CBOR. Through our experiments, we have demonstrated that TinyOCSP
required 41% less energy for validating eight certificates compared to OCSP
on an ARM Cortex-M3 SoC. Additionally, we observed that the transactions
in bytes needed by TinyOCSP were at least 73% smaller than those needed by
OCSP.

Reflections
This piece of work covers an important aspect of the IoT life cycle: the ability
to verify the trust in external servers at a shorter time perspective than the valid
lifetime of a certificate, which can be very long. Different IoT scenarios will
have different requirements in terms of how frequent trust verifications need
to be done. In some cases, the server endpoints will be considered always
trusted, but in others, the IoT device can be required to always get an up-
to-date validation of a communication endpoint for each new communication
session. Since also the relatively lightweight revocation status check adds
further communication and processing, the trade-off between strict security
and resource usage needs to be done for the target scenario.

30

My Contribution
I am the main author of the paper. Shahid Raza conceptualised this paper and
I together with Shahid Raza supervised a master thesis and we together for-
mulated the design of this paper. The thesis student implemented the design.
I have also enhanced the initial design and worked on the security validation
and analysis.

3.4 Paper IV
Joel Höglund, Simon Bouget, Martin Furuhed, Göran Selander, John Matts-
son, and Shahid Raza. AutoPKI: Public Key Infrastructure for IoT with Auto-
mated Trust Transfer. Submitted. 2023

Summary
In this paper, we identified the increasing need to provide well-defined mech-
anisms for securely shifting the control of IoT deployments from one service
provider to another. This is required in order to prevent vendor lock-in and
guarantee long-time support and maintainability, as IoT deployments grow in
both size and number. We proposed AutoPKI, a lightweight mechanism for
securely transferring control between two IoT service providers or operators.
The solution utilises CBOR Web Tokens to encapsulate the agreements be-
tween service providers, which must be met during the operation, together
with existing lightweight certificate enrollment. We show that the overhead
for the involved IoT devices is small and that the number of manual steps is
minimised. We analyse the fulfilment of the security requirements, and for
a subset of them, we demonstrate that the desired security properties hold
through formal verification in Tamarin.

Reflections
This is a paper that puts the enrollment work in a larger context of new stan-
dards and protocols and business and policy decisions which still require man-
ual input. Hence the work serves to illustrate both the advantages of the newly
proposed PKI mechanisms and the several remaining sectors of IoT security,
which would benefit from continued standardisation work to further reduce
the need for human intervention in IoT security operations.

My Contribution
I am the main author of the paper. I have conceptualised and formulated the
initial design. The formal analysis was made by Simon Bouget, which led

31

to refinements of the design. I have done the prototype implementation to
validate the design and measure the overhead. I wrote the first version of
the manuscript, with formal modelling input from Bouget. The paper was
finalised together with the other authors. Shahid Raza has supervised this
work.

3.5 Paper V
Joel Höglund and Shahid Raza. “BLEND: Efficient and blended IoT data stor-
age and communication with application layer security”. In: 2022 IEEE Inter-
national Conference on Cyber Security and Resilience (CSR). 2022, pp. 253–
260. DOI: 10.1109/CSR54599.2022.9850290

Summary
In this paper, we presented BLEND, a mechanism for when IoT devices need
to store sensor data securely, but without adding extra overhead for when
data needs to be sent onto the network. The combination of secure storage
and communication security is achieved by storing data as pre-computed en-
crypted network packets. Compared with local secure storage methods, the
need for separate cryptographic operations for secure storage and communi-
cation is eliminated, and the communication latency is significantly reduced.
The evaluation demonstrated that BLEND is capable of reducing the latency
to get securely stored data ready for sending from 630 microseconds down to
110 microseconds per packet.

One of the key advantages of BLEND is that it does not require modifica-
tions to the secure communication standard reused also for secure storage, and
it can therefore preserve the underlying protocols’ security guarantees. This
is an important consideration when deploying secure communication systems
for critical infrastructure.

Reflections
The results in this paper illustrate that actual improvements for a given perfor-
mance metric are tightly tied to the specific hardware used. At the same time,
I see it as an illustration of the rich set of compound services that can be de-
signed and realised when reliable PKI for IoT solutions are available, further
contributing to the IoT security infrastructure.

My Contribution
I am the main author of the paper. I have done the design, with inspiration
from previous work done by Shahid Raza and others, implemented our design

32

and performed the experiments. I wrote the first version of the manuscript.
The final manuscript version was written together with Shahid Raza.

3.6 Paper VI
Joel Höglund, Anum Khurshid, and Shahid Raza. “AC-SIF: ACE Access Con-
trol for Standardized Secure IoT Firmware Updates”. In: International Con-
ference on Emerging Security Information, Systems and Technologies. 2022

Summary
In this paper, we identified the lack of standard-based remote secure update
solutions for IoT, something critical for the long time maintainability of IoT
deployments, and to prevent vendor lock-ins. We provided an update archi-
tecture design, which is capable of achieving end-to-end security between the
IoT devices and the update authors, without requiring a per-author-based trust
anchor provisioning by the manufacturer. The proposed solution follows the
existing recommendations from the new SUIT standard group and adds func-
tionality for the authorisation of update authors through the usage of CBOR
Web Tokens.

Reflections
Some of the SUIT related standard proposals are still being updated, which
means there is potential to further address shortcomings regarding complexity
and insufficient authorisation mechanisms we identified in the earlier versions.
Our work contributes a security building block that highlights the interplay
between PKI and other security mechanisms. The secure update architecture
requires secure key management, and in turn, improves the security and main-
tainability of the existing systems.

My Contribution
I am the main author of this paper. This work is built upon a research problem
conceptualised and formulated by Shahid Raza. I, with close interaction with
security researchers at RISE have developed the design with significant input
from Anum Khurshid.

33

4. Related Work

This chapter contains an overview of the related work to put the results of the
dissertation in context within the state-of-art in the included research fields
and relevant target industry developments.

4.1 Certificate Based Authentication
The idea of utilising certificates also for IoT security is not new; the advan-
tages and problems with authentication based on certificates have been dis-
cussed for more than a decade, as illustrated by several surveys [1, 28, 55].
Industrial actors have pointed out the benefits of PKI solutions for IoT, but
mainly proposing the usage of standard Internet protocols for less constrained
devices [16, 31]. The immaturity of existing standards and the challenges re-
lated to limited resources in the IoT and PKI were specifically identified in an
IoT security overview by Khan and Salah from 2018 [33].

The utilisation of automated and efficient certificate management has been
identified as crucial in several fields, where e-health and the automotive in-
dustry deserve to be mentioned specially. These industries place a significant
emphasis on privacy and safety, as well as compliance with strict standards
for legal and safety purposes [2, 17, 20]. The requirements and conditions
(including real-time constraints and specialised hardware) of the automotive
industry make the results obtained there not directly applicable to the broader
Internet of Things domain. However, the use cases do emphasise the impor-
tance of standard-based interoperability and optimised resource usage.

The conclusion of the existing state-of-art work is that there long has been
an active interest in bringing stronger authentication solutions and ideally full-
fledged PKI capabilities to a wider range of also more constrained IoT devices.
Yet the lack of suitable standards regarding mechanisms for lightweight key
management has been an unsolved issue, hindering the developments in the
area. Our contributions in Paper I and Paper II serve to close this gap.

X.509 Alternatives

There have been alternative proposals to X.509 for certificate formats. One
proposal is implicit certificates, with a potentially smaller memory footprint,
where the public key is not explicitly contained in the certificate, but can be
reconstructed from the certificate using the public key of the CA. Experi-
ments using implicit certificates for IoT devices have been demonstrated by

34

Park [43]. In addition, the IEEE 1609.2 standard defines implicit certificate
usage for Wireless Access in Vehicular Environments [27]. The uptake and
applicability for a wider range of IoT scenarios seem to have been limited,
illustrating the difficulty to gain widespread usage for solutions that are not in
line with the other infrastructure standards. In comparison, our proposed effi-
cient certificate encoding schema can offer substantial memory savings while
being well-aligned with existing standards (see Paper I and Paper IV).

4.2 Revocation, and Efficient Techniques for
Revocation List Encoding

How to efficiently share the status of a device through propagating the revo-
cation status of the associated certificate has been extensively studied. OCSP
has been established as the main standard for systems where a new certificate
validity update is produced for each new request. Other proposed revocation
systems share the revocation data through lists or other data structures, which
carry varying overheads.

Revocation Lists and Techniques for Compact Revocation Status

Encoding

CRL is an old technique still used where the associated overhead is acceptable.
In addition to X.509 CRLs and delta-CRLs, Google maintains a curated list of
revoked certificates for Chrome, called CRLSet. CRLSet has been shown by a
private company investigation to detect less than 2% of the revoked certificates
on the Web [21]. The underlying assumption to make this acceptable is that
the majority of websites with revoked certificates are very unlikely to ever be
visited by regular web users. Since CRLs carry a large overhead, proposals
for more compact encodings have been proposed. CRL compression through
Bloom filters has been proposed by various researchers for Vehicular Ad hoc
Networks [47], advanced metering infrastructures [46] and Web browsers [35].
These research papers have not been formalised in any standardised protocol,
but they demonstrate a potential for high compression ratios using Bloom fil-
ters. In Paper III we present details for which scenarios where using Bloom
filters for CRL compression is beneficial.

Distributed Revocation State

An alternative to the explicit methods is to share certificate status in a dis-
tributed fashion across networks of devices, as proposed by Li et al. and
Wright et al. [38, 59]. These solutions break end-to-end security between
the device wanting to validate a certificate (the relying party) and the valida-
tion authority, thus not meeting the same general requirements. Our proposed
solution in Paper III keeps the security properties of OCSP while providing a
lightweight format usable also for IoT.

35

4.3 Ownership Transfer
The area of transference of trust between two service providers, with the goal
to enable different IoT service providers to shift responsibilities between each
other, is related to the more specific issue of ownership transfer. The field of
ownership transfer for IoT has been examined with the goal of privacy protec-
tion and through custom non-PKI-based solutions.

Privacy protection is the focus of Khan et al. in [32], where a solution
for automatically detecting ownership changes of smart home devices, based
on user profiles, is presented. Gunnarsson and Gehrmann focus on ensuring
forward and backward security between the former and new owner in [22].
The solution is based on symmetric keys and a trusted third party, avoiding the
need for PKI support or standard compliance.

The conclusion is that there is a lack of scalable solutions which utilise
interoperable PKI functionality. The absence motivated our work in Paper IV.

4.4 Secure Storage
Compared with the area of secure communication, the field of secure storage
has seen much fewer standardisation efforts. Relevant efforts can be found
in several related areas. Designs for custom deployments have been proposed
based on Blockchain solutions [42, 61]. These are dependent on custom server
infrastructure and not suitable for those IoT devices which are less powerful
than cell phones or routers.

The field of Trusted Execution Environments (TEEs), such as ARM’s Trust-
Zone, is another related area. Secure storage solutions for Android-based de-
vices using TrustZone have been proposed by Li et al. [36]. A use case for
TEEs with relevance for IoT is to construct secure key storages, as seen in
work by Pinto and Santos and Hein et al., as well as in Android OS documen-
tation [3, 23, 44]. These solutions are generally expensive to implement and
maintain per stored byte, and not suitable as a general IoT storage system for
constrained devices.

Previous research has presented two solutions for combining secure com-
munication with secure storage, FUSION by Bagci et al. [7] and FDTLS by
Boo et al. [10], using IPsec and DTLS. Relevant insights include the impor-
tance to optimise memory hardware usage, to minimise costly flash memory
operations. A key disadvantage of the proposed solutions is the reliance on
PSK, pre-shared keys. The many security weaknesses and single-point-of-
failure built into pre-shared password solutions are parts of the problems that
modern key management solutions seek to alleviate. The transport layer pro-
tocols used have large headers, which, especially in 802.15.4 radio networks,
severely limits the space left for IoT data. In addition, the proposals break the
protocol specifications for how session keys should be generated with random
data.

36

The identified shortcomings have motivated our work in Paper V where we
propose a design taking advantage of application layer security and lightweight
key management, that avoids the endangering of security which follows the re-
moval of random data in previous solutions.

4.5 Secure Software Updates
A secure update architecture for IoT needs to provide solutions for how the
update software and the associated metadata are specified and securely dis-
tributed. To prevent vendor lock-ins and further interoperability, the solution
benefits from being standard-based and using established credential manage-
ment mechanisms.

For systems with few resource constraints, package managers have been a
commonly used solution for how to solve the issue of software update dis-
tribution. Depending on the target platform, there are systems such as RPM,
dpkg, and commercial app stores. To establish trust and verify the validity of
updates, solutions similar to those used for web browsers can be used, where
the trust anchors required to verify updates with PKI operations, such as code
signing, need to be pre-installed in the operating system.

Update architectures can introduce severe security vulnerabilities, and it
has been argued by Samuel et al. that a single signature is insufficient for a
recipient to trust a new update [49]. To increase the security level, a scheme
where at least a predefined number, out of a total pool of trusted signers, have
signed an update could be utilised. A version with two trusted signers was
proposed by Asokan et al., relying on lists of authorised authors and their trust
anchors to be pre-shared with the target devices [6].

A proposal for IoT software updates is presented by Xue et al., where non-
constrained controller devices support less powerful IoT devices [60]. For
networks with devices that are themselves too constrained to act as fully in-
dependent endpoints this is a possible solution which is complementary to the
efforts to bring PKI capabilities to the IoT devices that could utilise them.

The conclusion based on existing state-of-art is that there is a need for a stan-
dard based more lightweight secure update architecture for IoT, a challenge
we address in Paper VI. Our proposed design aligns with proposed SUIT stan-
dards [39] and additionally proposes a solution for authorisation of update
providers, which removes the need for pre-shared lists of authorised authors.

37

5. Conclusions and Future Work

In this section, I present some concluding remarks before discussing some
future IoT security challenges and possible future directions of work.

5.1 Conclusions
Technological development has been rapid in the area of both IoT and security
in the last decade. Yet the combination of the areas, to provide secure IoT so-
lutions, has been less obvious. A limiting factor is the slow process to develop
and agree on open standards, a bureaucratic process that often takes many
years from the initial proposal to the accepted standard. Quite often large tech
companies create their own infrastructure and ecosystems, with their own se-
curity solutions. This creates a situation where third parties either are shut out
or have to pay fees to contribute to the proprietary infrastructures.

Based on the above perspectives, I believe it is important for academia to-
gether with the parts of the industry that are prepared to work actively for
interoperability, to go further and show the potential of new security solu-
tions. In this thesis, we have proposed and evaluated several new building
blocks, with a common goal to further the security for IoT. This has been
demonstrated by providing lightweight mechanisms for certificate enrollment
and compact certificate encodings in Paper I and Paper IV. Together with the
proposals for lightweight certificate revocation in Paper III, we have made
steps towards standard-based key management which is practically available
for IoT. By proposing mechanisms for combined secure storage and commu-
nication in Paper V we help make more security-sensitive scenarios feasible.
Finally, by proposing solutions for secure transfer of trust and secure updates
in Paper VI we contribute to the long time maintainability of IoT systems.
Together they form steps towards the creation of a scalable security infras-
tructure, capable of handling heterogeneous IoT devices, bringing IoT devices
closer to being full Internet citizens.

5.2 Future Challenges and Future Work
Future Challenges

Concerning some current aspects barely touched upon in the previous sections:

38

Artificial Intelligence. The full impact of the rapid development of AI with
respect to the area of computer security is very hard to predict. Some obser-
vations can still be made. Until we have AI systems that can formally prove
the claims they make, or at least give very strict explanations, it is unlikely
that human-made security solutions are replaced with entirely machine-made
ones. AI systems might be trained to serve as useful tools for security and
safety development, for instance, to act as powerful attackers and try to hack
existing systems to find real-world vulnerabilities. Other AI security-related
areas are surveillance and different forms of detection systems. These are
all developments that further highlight the need for secure communication in
general and stress the importance of a robust security infrastructure. Finally,
AI tools for code generation and code testing can help to speed up practical
security developments.

Quantum cryptography. Quantum computing is seen as an imminent threat
to all Internet security since important asymmetric algorithms used in today’s
PKIs could be compromised with the advent of post-test-scale quantum com-
puting. The predictions of when quantum computers might be sufficiently
powerful to be real threats to current asymmetric algorithm keys vary greatly.
Nevertheless, both academia and state agencies are looking into ways of al-
leviating the potential problem, and developing Post-Quantum Cryptography
(PQC) [8]. Within IETF there are proposals and active discussions on quantum
robust algorithms, using novel hashing mechanisms instead of for instance el-
liptic curves (such as Leighton-Micali Hash-Based Signatures [37]). The pro-
posed application layer standard, EDHOC, acknowledges and discusses the
potential need to in the future replace the current algorithms with PQC, and
their usage has already been specified for COSE [24].

Regarding certificates specifically, it is less problematic since a certificate
data structure can easily hold key material belonging to hash-based keying
mechanisms, which at least currently, are believed to be quantum resilient. It
is worth noticing that the algorithm which is specified for COSE usage only
securely can be used for a fixed number of signing operations [24]. This could
lead to a demand for frequent certificate updates and highlights the need for
compact certificates and lightweight enrollment operations.

Future Work

There are many open possible future directions for how to continue to strengthen
IoT security infrastructure. Some that I think are worth mentioning are:

Looking into how the newly published proposal for a Remote ATtestation
procedureS (RATS) architecture [9] best could be combined with lightweight
PKI solutions to improve the possibilities to offer secure IoT deployments and
further automate maintenance.

Our solution for revocation does not address OCSP stapling, a mechanism
which might be adaptable also for IoT to remove the reliance on an always
reachable validation authority and possibly further reduce the overhead.

39

There are still low-level details related to bootstrapping of IoT devices in
multi-hop networks where manual or insecurely automated deployment steps
would benefit from further standardisation and developments making use of
PKI functionality.

The ongoing interest in extremely constrained batteryless IoT devices leads
to new vulnerabilities which are even harder to address. Finding efficient ways
for the more capable IoT devices to coordinate security services for the most
constrained devices is an important task, where the new PKI functionality
should be taken advantage of as far as possible.

One of the practical details I plan to continue attending to is pushing the
C509 draft to an accepted RFC. This could include adding expansions to cover
the encoding of revocation operations.

40

6. Summary in Swedish

Sakernas internet, även kallat IoT, det nätverk av kommunicerande enheter
som oftast saknar traditionella användargränssnitt och är begränsade i beräkn-
ingskapacitet, har vuxit kraftigt de senaste tio åren. I allmänhetens medve-
tande är troligen de många smarta prylar för styrning och kontroll i privata
hem, eller för träning och motion, mest framträdande. IoT-lösningar används
alltmer även i säkerhetskritiska tillämpningar, som infrastruktur och sjukvård.
I samband med det kraftigt ökande användande har behoven av skalbara säk-
erhetslösningar vuxit i motsvarande grad. Kända cyberangrepp som Stuxnet-
attackerna på Irans elinfrastruktur har fått mycket mediauppmärksamhet, men
även till synes säkerhetsmässigt obetydliga smarta prylar kan hackas och an-
vändas mot andra mål i cyberattacker genom så kallade botnets.

Under framväxten av sakernas internet har säkerhetslösningarna ofta släpat
efter, varit otillräckliga och många gånger bundna till ett specifikt företag,
något som skapar inlåsningseffekter och förhindrar skapandet av säkra nätverk
med samverkande enheter från olika leverantörer.

Till stor del har bristen på säkerhetslösningar speglat bristen på kapacitet
hos IoT-enheterna. Samtidigt har det funnits ett intresse från både forskar-
världen och industrin att skapa fler standarder även för enheter med begrän-
sade resurser. Det skulle ha en rad fördelar, som att göra dem enklare att
använda även i heterogena system, för att göra det möjligt för fler och även
mindre företag i branschen att kunna konkurrera, och det höjer abstraktion-
snivån för dem som ska skapa tjänster för systemen genom att skapa enhetliga
programmeringsinterface mot standardiserade protokoll.

Två parallella trender inom IoT som kan urskiljas är å ena sidan en utveck-
ling mot extremt resursbegränsade enheter utan batterier som samlar sin energi
från omgivningen. Dessa kräver än så länge extremt anpassade lösningar, och
kan inte direkt integreras med övriga internet. Den andra trenden är mot mer
kraftfulla enheter, som med rätt anpassningar har förutsättningar för att inte-
greras med säkerhetslösningar som används på övriga internet. Det är värt
att påpeka att behovet av optimeringar kommer att kvarstå även när resurs-
erna blir fler: för att hålla nere hårdvarukostnaderna, för att förlänga tiden
vid batteridrift och för att hantera utmaningarna för trådlösa uppkopplingar i
utmanande radiomiljöer.

För att undvika beroende av enskilda företag bör IoT-säkerhet dra nytta av
de lösningar som redan används på resten av internet. En av de mest grundläg-
gande säkerhetstjänsterna är autentisering, att verifiera identiteten hos någon
du behöver interagera med. Tack vare lösningar för kryptografi som bygger

41

på tvådelade nycklar, en publik och en hemlig, har det varit möjligt att bygga
upp system där de offentliga nycklarna fritt kan distribueras. Det är tillräck-
ligt att känna till den publika nyckeln som hör till en användare eller enhet för
att en annan användare ska kunna bekräfta om en signatur har skapats med
den tillhörande hemliga nyckeln. Genom tillgång till digitala certifikat, där
publika nycklar kapslats in och som signeras av en betrodd tredje part, blir
det möjligt för två parter att säkert autentisera varandra. Hela systemet för
att hantera tjänsterna för autentisering och tillhörande delar, certifikat, nycklar
och policyer, bildar en så kallad Public Key Infrastructure, PKI. Systemet med
publika nycklar distribuerade genom certifikat har blivit grunden för nästan all
internetkommunikation. För vanliga användare är dessa säkerhetsdetaljer of-
tast dolda.

Befintliga lösningar för PKI har varit för komplexa och resurskrävande för
att kunna användas för IoT, men fördelarna med att låta även IoT-enheter bli
en del av säkerhetsinfrastrukturen har gjort det till ett intressant forskningsom-
råde.

Temat för arbetet som presenteras i denna avhandling har varit att över-
brygga delar av de befintliga gap vi identifierat i det nuvarande sakernas inter-
net gällande befintliga säkerhetslösningar. Fokus är på protokoll, mekanismer
och effektiva format snarare än nya kryptografiska algoritmer.

Flera av bidragen syftar till att förbättra tillgången till säkra PKI-lösningar
för IoT. Det inkluderar lösningar för att registrera nya certifikat, en av de mest
grundläggande PKI-operationerna. Tillsammans med nya mer kompakta for-
mat för att lagra och hantera certifikat minskas den resursanvändning som
krävs för en IoT-enhet att koppla upp sig och registrera ett nytt certifikat till
mer hanterbara nivåer. Ytterligare förbättringar handlar om att skapa lösningar
som gör det möjligt att tillhandahålla komplett punkt-till-punkt-säkerhet som
låter datatrafik passera proxy-routrar.

Förutom att registrera nya certifikat behövs också mekanismer för att åter-
kalla befintliga sådana, t ex om en dator hackats och inte längre ska användas.
Ett av bidragen föreslår en resurseffektiv lösning för att låta IoT-enheter un-
dersöka statusen hos eventuellt återkallade certifikat.

Ett av bidragen syftar till att föreslå nya metoder för att effektivt lagra sen-
sordata lokalt på IoT-enheter, så att data omedelbart och säkert kan skickas ut
på nätverket utan extra operationer för kryptering. Vi demonstrerar hur detta
kan minska resursbehovet och minska fördröjningarna för datainsamling.

För att förbättra möjligheterna för mer långsiktigt underhåll av IoT-system
föreslår vi effektiva metoder för att flytta kontrollen mellan olika operatörer,
med ett minimum av manuellt arbete.

En annat bidrag för att förbättra möjligheterna att upprätthålla säkerheten
för IoT-system över tid, till exempel i ljuset av nyupptäckta brister som kräver
åtgärder av befintliga installationer, är en standardbaserad arkitektur för säkra
mjukvaruuppdateringar för IoT. Genom kompakta representationer av meta-

42

data skapas möjligheter för resurseffektiv accesskontroll för IoT-enheter som
kan verifiera om en uppdatering är avsedd för dem och har en giltig utgivare.

Utöver de bidrag som har publicerats i vetenskapliga artiklar har vi samar-
betat med kollegor i industrin för att dela resultaten i form av nya standarder,
för att öka chanserna till industriellt genomslag.

Sammanlagt har vi genom dessa bidrag föreslagit en rad nya byggstenar för
att skapa och upprätthålla säkra PKI-system som klarar att hantera begränsade
IoT-enheter. Vi har därigenom tagit viktiga steg mot att göra även IoT-enheter
till fullvärdiga deltagare på ett säkert internet.

43

Bibliography

[1] Fahd A. Alhaidari and Ebtesam J. Alqahtani. “Securing Communication
between Fog Computing and IoT Using Constrained Application Proto-
col (CoAP): A Survey”. In: J. Commun. 15 (2020), pp. 14–30.

[2] M. N. Aman, U. Javaid, and B. Sikdar. “A Privacy-Preserving and Scal-
able Authentication Protocol for the Internet of Vehicles”. In: IEEE In-
ternet of Things Journal 8.2 (2021), pp. 1123–1139. DOI: 10.1109/
JIOT.2020.3010893.

[3] Android keystore system. 2020. URL: https://developer.android.
com/training/articles/keystore (visited on 05/31/2021).

[4] Deeksha Anniappa and Yoohwan Kim. “Security and Privacy Issues
with Virtual Private Voice Assistants”. In: 2021 IEEE 11th Annual Com-
puting and Communication Workshop and Conference (CCWC). 2021,
pp. 0702–0708. DOI: 10.1109/CCWC51732.2021.9375964.

[5] Manos Antonakakis et al. “Understanding the Mirai Botnet”. In: Pro-
ceedings of the 26th USENIX Conference on Security Symposium. SEC’17.
Vancouver, BC, Canada: USENIX Association, 2017, 1093–1110.

[6] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghi, and G. Tsudik.
“ASSURED: Architecture for Secure Software Update of Realistic Em-
bedded Devices”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37.11 (2018), pp. 2290–2300. DOI: 10.
1109/TCAD.2018.2858422.

[7] Ibrahim Ethem Bagci, Shahid Raza, Utz Roedig, and Thiemo Voigt.
“Fusion: coalesced confidential storage and communication framework
for the IoT”. In: Security and Communication Networks 9.15 (2016),
pp. 2656–2673.

[8] William Barker, William Polk, and Murugiah Souppaya. White paper:
Getting Ready for Post-Quantum Cryptography: Exploring Challenges
Associated with Adopting and Using Post-Quantum Cryptographic Al-
gorithms. Tech. rep. NIST CSWP 15. 100 Bureau Drive, Gaithersburg,
MD 20899: National Institute of Standards and Technology, 2021. URL:
https://doi.org/10.6028/NIST.CSWP.04282021.

[9] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan. Remote
ATtestation procedureS (RATS) Architecture. RFC 9334. RFC Editor,
2023. URL: https://www.rfc-editor.org/info/rfc9334.

44

[10] EunSeong Boo, Shahid Raza, Joel Höglund, and JeongGil Ko. “FDTLS:
Supporting DTLS-Based Combined Storage and Communication Secu-
rity for IoT Devices”. In: 16th IEEE International Conference on Mobile
Ad Hoc and Sensor Systems, MASS 2019, Monterey, CA, USA, Novem-
ber 4-7, 2019. IEEE, 2019, pp. 127–135.

[11] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-
Node Networks. RFC 7228. RFC Editor, 2014. URL: http://www.rfc-
editor.org/rfc/rfc7228.txt.

[12] C. Bormann and P. Hoffman. Concise Binary Object Representation
(CBOR). RFC 7049. RFC Editor, 2013.

[13] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained
Application Protocol (CoAP). RFC 7959. RFC Editor, 2016.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile. RFC 5280. RFC Editor, 2008. URL: http:
//www.rfc-editor.org/rfc/rfc5280.txt.

[15] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460. RFC Editor, 1998.

[16] DigiCert. PKI: The Security Solution for the Internet of Things. Tech.
rep. DigiCert Inc., 2017.

[17] C. Doukas, I. Maglogiannis, V. Koufi, F. Malamateniou, and G. Vassila-
copoulos. “Enabling data protection through PKI encryption in IoT m-
Health devices”. In: 2012 IEEE 12th International Conference on Bioin-
formatics Bioengineering (BIBE). 2012, pp. 25–29. DOI: 10 . 1109 /
BIBE.2012.6399701.

[18] Adam Dunkels, Joakim Eriksson, Niclas Finne, Fredrik Österlind, Nico-
las Tsiftes, Julien Abeillé, and Mathilde Durvy. “Low-power IPv6 for
the Internet of Things”. In: 2012 Ninth International Conference on Net-
worked Sensing (INSS). 2012, pp. 1–6. DOI: 10.1109/INSS.2012.
6240537.

[19] David Emery. ‘My Friend Cayla’ Doll Records Children’s Speech, Is
Vulnerable to Hackers. Snoopes, 2017. URL: https://www.snopes.
com / news / 2017 / 02 / 24 / my - friend - cayla - doll - privacy -
concerns/ (visited on 12/20/2022).

[20] Thanassis Giannetsos and Ioannis Krontiris. “Securing V2X Commu-
nications for the Future: Can PKI Systems Offer the Answer?” In: Pro-
ceedings of the 14th International Conference on Availability, Reliability
and Security. ARES ’19. Canterbury, CA, United Kingdom: Association
for Computing Machinery, 2019.

45

[21] Steve Gibson. An Evaluation of the Effectiveness of Chrome’s CRLSets.
[Online; accessed 22-January-2023]. 2014. URL: https://web.archive.
org/web/20221220170220/https://www.grc.com/revocation/
crlsets.htm.

[22] Martin Gunnarsson and Christian Gehrmann. “Secure ownership trans-
fer for the Internet of Things”. eng. In: Proceedings of the 6th Interna-
tional Conference on Information Systems Security and Privacy. Ed. by
Steven Furnell, Paolo Mori, Edgar Weippl, and Olivier Camp. Vol. 1.
SciTePress, 2020, pp. 33–44. DOI: 10.5220/0008928300330044.

[23] Daniel Hein, Johannes Winter, and Andreas Fitzek. “Secure Block De-
vice – Secure, Flexible, and Efficient Data Storage for ARM Trust-
Zone Systems”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. 2015,
pp. 222–229. DOI: 10.1109/Trustcom.2015.378.

[24] R. Housley. Use of the HSS/LMS Hash-Based Signature Algorithm with
CBOR Object Signing and Encryption (COSE). RFC 8778. RFC Editor,
2020. URL: https://www.rfc-editor.org/info/rfc8778.

[25] Russell Housley, Warwick Ford, Tim Polk, and David Solo. Internet
X.509 Public Key Infrastructure Certificate and CRL Profile. RFC 2459.
RFC Editor, 1999.

[26] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282. RFC Editor, 2011. URL:
http://www.rfc-editor.org/rfc/rfc6282.txt.

[27] IEEE 1609.2-2016 - IEEE Standard for Wireless Access in Vehicular En-
vironments. 2016. URL: https://standards.ieee.org/standard/
1609_2-2016.html.

[28] Qi Jing, Athanasios V. Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao
Qiu. “Security of the Internet of Things: perspectives and challenges”.
In: Wireless Networks 20.8 (2014), pp. 2481–2501. DOI: 10 . 1007 /
s11276-014-0761-7.

[29] M. Jones, L. Seitz, G. Selander, S. Erdtman, and H. Tschofenig. Proof-
of-Possession Key Semantics for CBOR Web Tokens (CWTs). RFC 8747.
RFC Editor, 2020.

[30] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306. RFC
Editor, 2005.

[31] Keyfactor. PKI: The Solution for Building Secure IoT Devices. Tech.
rep. Keyfactor, Inc, 2020.

[32] Md Sakib Nizam Khan, Samuel Marchal, Sonja Buchegger, and N. Asokan.
“chownIoT: Enhancing IoT Privacy by Automated Handling of Own-
ership Change”. In: Privacy and Identity Management. Fairness, Ac-
countability, and Transparency in the Age of Big Data : vol. 547. 2018,
pp. 205–221. DOI: 10.1007/978-3-030-16744-8_14.

46

[33] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, block-
chain solutions, and open challenges”. In: Future Generation Computer
Systems 82 (2018), pp. 395–411. DOI: https://doi.org/10.1016/
j.future.2017.11.022.

[34] Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ Approach to Authen-
ticated Diffie-Hellman and Its Use in the IKE Protocols”. In: Advances
in Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 400–425.

[35] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan
Mislove, and Christo Wilson. “CRLite: A Scalable System for Pushing
All TLS Revocations to All Browsers”. In: 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 539–556. DOI: 10.1109/
sp.2017.17. URL: https://doi.org/10.1109/sp.2017.17.

[36] Xiaolei Li, Hong Hu, Guangdong Bai, Yaoqi Jia, Zhenkai Liang, and
Prateek Saxena. “DroidVault: A Trusted Data Vault for Android De-
vices”. In: 2014 19th International Conference on Engineering of Com-
plex Computer Systems. 2014, pp. 29–38. DOI: 10 . 1109 / ICECCS .
2014.13.

[37] D. McGrew, M. Curcio, and S. Fluhrer. Leighton-Micali Hash-Based
Signatures. RFC 8554. RFC Editor, 2019.

[38] Xin Li Minmei Wang Chen Qian and Shouqian Shi. “Collaborative Val-
idation of Public-Key Certificates for IoT by Distributed Caching”. In:
Proceedings of IEEE INFOCOM. Paris, France, 2019, pp. 92–105.

[39] Brendan Moran, Hannes Tschofenig, Henk Birkholz, and Koen Zand-
berg. A Concise Binary Object Representation (CBOR)-based Serializa-
tion Format for the Software Updates for Internet of Things (SUIT) Man-
ifest. Internet-Draft draft-ietf-suit-manifest-17. IETF Secretariat, 2022.
URL: https://www.ietf.org/archive/id/draft-ietf-suit-
manifest-17.txt.

[40] Moteiv. Tmote Sky, Ultra low power IEEE 802.15.4 compliant wire-
less sensor module. [Online; accessed 23-January-2023]. 2006. URL:
https://web.archive.org/web/20070205095928/http://www.
moteiv.com/products/docs/tmote-sky-datasheet.pdf.

[41] Nordic Semiconductor. nRF52840 System-on-Chip, Multiprotocol Blue-
tooth 5.2 SoC supporting Bluetooth Low Energy, Bluetooth mesh, NFC,
Thread and Zigbee. [Online; accessed 23-January-2023]. 2021. URL:
https://web.archive.org/web/20210731190637/https://
www.nordicsemi.com/Products/nRF52840.

47

[42] Baraka William Nyamtiga, Jose Costa Sapalo Sicato, Shailendra Rathore,
Yunsick Sung, and Jong Hyuk Park. “Blockchain-Based Secure Storage
Management with Edge Computing for IoT”. In: Electronics 8.8 (2019).
DOI: 10.3390/electronics8080828.

[43] Chang-Seop Park. “A Secure and Efficient ECQV Implicit Certificate
Issuance Protocol for the Internet of Things Applications”. In: IEEE
Sensors Journal 17.7 (2017), pp. 2215–2223. DOI: 10.1109/JSEN.
2016.2625821.

[44] Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Com-
prehensive Survey”. In: ACM Comput. Surv. 51.6 (2019).

[45] M. Pritikin, P. Yee, and D. Harkins. Enrollment over Secure Transport.
RFC 7030. RFC Editor, 2013.

[46] K. Rabieh, M. M. E. A. Mahmoud, K. Akkaya, and S. Tonyali. “Scalable
Certificate Revocation Schemes for Smart Grid AMI Networks Using
Bloom Filters”. In: IEEE Transactions on Dependable and Secure Com-
puting 14.4 (2017), pp. 420–432. DOI: 10.1109/TDSC.2015.2467385.

[47] Maxim Raya, Daniel Jungels, Panos Papadimitratos, Imad Aad, and
Jean-Pierre Hubaux. “Certificate Revocation in Vehicular Networks”.
In: Laboratory for computer Communications and Applications (LCA)
(2006).

[48] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Ver-
sion 1.2. RFC 6347. RFC Editor, 2012. URL: http : / / www . rfc -
editor.org/rfc/rfc6347.txt.

[49] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine.
“Survivable Key Compromise in Software Update Systems”. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communica-
tions Security. CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 61–
72. DOI: 10.1145/1866307.1866315.

[50] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C.
Adams. X.509 Internet Public Key Infrastructure Online Certificate Sta-
tus Protocol - OCSP. RFC 6960. RFC Editor, 2013. URL: http://www.
rfc-editor.org/rfc/rfc6960.txt.

[51] Ludwig Seitz, Goeran Selander, Erik Wahlstroem, Samuel Erdtman, and
Hannes Tschofenig. Authentication and Authorization for Constrained
Environments (ACE) using the OAuth 2.0 Framework (ACE-OAuth). In-
ternet Draft draft-ietf-ace-oauth-authz-24. IETF Secretariat, 2019. URL:
http://www.ietf.org/internet- drafts/draft- ietf- ace-
oauth-authz-24.txt.

[52] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. Object Security for
Constrained RESTful Environments (OSCORE). RFC 8613. RFC Editor,
2019.

48

[53] Goeran Selander, John Mattsson, and Francesca Palombini. Ephemeral
Diffie-Hellman Over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-
03. IETF Secretariat, 2020.

[54] Stuxnet. Stuxnet — Wikipedia, The Free Encyclopedia. [Online; accessed
10-January-2023]. 2023. URL: https : / / en . wikipedia . org / w /
index.php?title=Stuxnet&oldid=1131553616.

[55] R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. G. de Azevedo, and
F. Hessel. “Evaluating the use of TLS and DTLS protocols in IoT mid-
dleware systems applied to E-health”. In: 2017 14th IEEE Annual Con-
sumer Communications Networking Conference (CCNC). 2017, pp. 480–
485. DOI: 10.1109/CCNC.2017.7983155.

[56] H. Tschofenig and T. Fossati. Transport Layer Security (TLS) / Data-
gram Transport Layer Security (DTLS) Profiles for the Internet of Things.
RFC 7925. RFC Editor, 2016.

[57] Nguyen Van Huynh, Dinh Thai Hoang, Xiao Lu, Dusit Niyato, Ping
Wang, and Dong In Kim. “Ambient Backscatter Communications: A
Contemporary Survey”. In: vol. 20. 4. 2018, pp. 2889–2922. DOI: 10.
1109/COMST.2018.2841964.

[58] Wikipedia contributors. ASN.1 — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=ASN.1&oldid=
1108950664. [Online; accessed 22-January-2023]. 2022.

[59] Rebecca N. Wright, Patrick D. Lincoln, and Jonathan K. Millen. “Effi-
cient Fault-tolerant Certificate Revocation”. In: Proceedings of the 7th
ACM Conference on Computer and Communications Security. CCS ’00.
Athens, Greece: ACM, 2000, pp. 19–24. DOI: 10.1145/352600.352605.

[60] Nian Xue, Daojing Guo, Jie Zhang, Jihao Xin, Zhen Li, and Xin Huang.
“OpenFunction for Software Defined IoT”. In: 2021 International Sym-
posium on Networks, Computers and Communications (ISNCC). 2021,
pp. 1–8. DOI: 10.1109/ISNCC52172.2021.9615751.

[61] Lijing Zhou, Licheng Wang, Yiru Sun, and Pin Lv. “BeeKeeper: A Block-
chain-Based IoT System With Secure Storage and Homomorphic Com-
putation”. In: IEEE Access 6 (2018), pp. 43472–43488. DOI: 10.1109/
ACCESS.2018.2847632.

49

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2230

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-495320

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2023

Paper I

Computers & Security 89 (2020) 101658

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

PKI4IoT: Towards public key infrastructure for the Internet of Things

Joel Höglund

a , Samuel Lindemer a , Martin Furuhed

b , Shahid Raza

a , ∗

a RISE Research Institutes of Sweden Isafjordsgatan 22, Kista 16440, Stockholm

b Technology Nexus Secured Business Solutions, Sweden, Telefonvägen 26, Hägersten 12626, Stockholm

a r t i c l e i n f o

Article history:

Received 20 June 2019

Revised 3 October 2019

Accepted 31 October 2019

Available online 5 November 2019

Keywords:

Security

CBOR

IoT

PKI

Digital certificates

Enrollment

Embedded systems

Contiki

a b s t r a c t

Public Key Infrastructure is the state-of-the-art credential management solution on the Internet. How-

ever, the millions of constrained devices that make of the Internet of Things currently lack a centralized,

scalable system for managing keys and identities. Modern PKI is built on a set of protocols which were

not designed for constrained environments, and as a result many small, battery-powered IoT devices lack

the required computing resources. In this paper, we develop an automated certificate enrollment protocol

light enough for highly constrained devices, which provides end-to-end security between certificate au-

thorities (CA) and the recipient IoT devices. We also design a lightweight profile for X.509 digital certifi-

cates with CBOR encoding, called XIOT . Existing CAs can now issue traditional X.509 to IoT devices. These

are converted to and from the XIOT format by edge devices on constrained networks. This procedure

preserves the integrity of the original CA signature, so the edge device performing certificate conversion

need not be trusted. We implement these protocols within the Contiki embedded operating system and

evaluate their performance on an ARM Cortex-M3 platform. Our evaluation demonstrates reductions in

energy expenditure and communication latency. The RAM and ROM required to implement these proto-

cols are on par with the other lightweight protocols in Contiki’s network stack.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Public key infrastructure (PKI) is ubiquitous throughtout a wide

variety of networked systems for centralized credential manage-

ment and key distribution. The Internet of Things (IoT) has been

slow to adopt PKI due to reasons both economic and technical.

Instead, embedded systems often rely on pre-shared keys (PSK),

which become problematic when those systems are connected to

the Internet and become globally adressable. The keys must be in-

stalled before deployment, and because centralized resources must

share a key with each device in order to communicate, a single

server compromise can put the entire network at risk. Moreover,

many basic security guarantees such as proof-of-origin, access con-

trol, non-repudiation and authentication are simply not possible

with PSK systems.

Regardless of the simplicity of each individual device, the IoT

presents great security risks due to its sheer scale, which is likely

to increase by billions of devices in the next few years. In the Mirai

∗ Corresponding author.

E-mail addresses: joel.hoglund@ri.se (J. Höglund), samuel.lindemer@ri.se

(S. Lindemer), martin.furuhed@nexusgroup.com (M. Furuhed), shahid.raza@ri.se (S.

Raza).

Fig. 1. An illustration of PKI-protected IoT setup with end-to-end security between

IoT devices and back-end service, without intermediate trusted gateways.

attack of 2016, for example, hackers created a 60 0,0 0 0-device bot-

net of unsecured embedded systems (primarily surveillance cam-

eras), which were then used to launch DDoS attacks. In Germany,

parents were told to destroy the doll “My Friend Cayla”, because it

https://doi.org/10.1016/j.cose.2019.101658

0167-4048/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

2 J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658

contained an unsecured Internet-connected microphone, and was

classified as an illegal surveillance device (Emery, 2017). These ex-

amples are trivial compared to the risks associated with Internet-

connected patient monitoring systems and medical implants. In

summary, any device, regardless of size or function, must have

strong authentication mechanisms when connected to the Internet,

and those mechanisms are all based on PKI and digital certificates.

PINs and passwords are extremely weak in comparison.

IoT devices are often basic sensors or actuators with stringent

resource constraints. In order to participate in a PKI, they must

have mechanisms for initial enrollment (i.e., obtaining the first

certificate and key pair), re-enrollment and certificate verification.

These are not inherently complex operations, but the existing stan-

dards for each of them were not designed for battery-powered de-

vices with tens of kilobytes of RAM and low-power radios. In re-

cent years, several lightweight profiles of traditional Web proto-

cols have been standardized to enable IPv6 networking on highly-

constrained devices. This began with 6LoWPAN in 2007, which

compresses IPv6 packets for low-power radio networks. Later CoAP

and CBOR were introduced, which are lightweight profiles of HTTP

and JSON, respectively. In this paper, we build upon these tech-

nologies to enable PKI for IoT, or PKI4IoT .

With very few exceptions, digital certificates are issued in the

X.509 ASN.1 format. This is not a particularly compact encoding

scheme, but due to its monopoly on modern PKI implementations,

the solutions developed in this paper are designed work with it.

An important distinction should be drawn between reinventing PKI

and making constrained devices compatible with existing PKI. We

believe the latter is the better, more feasible approach; migrating

the entire Internet to a new, compact certificate format is unlikely

to occur within the next decade.

Our contributions in this work constitute a major step towards

PKI4IoT. The main contributions of the paper are as follows.

• The design of an integrated lightweight certificate enrollment

for IoT devices, with support for automated zero-touch protec-

tion of enrollment sessions.

• The profiling and lightweight encoding of X.509 certificates.

• The implementation of lightweight enrollment for resource-

constrained devices, specifically the integration of EST and do-

main specific certificate compression mechanisms which main-

tains the end to end security guarantees.

• Evaluation of the PKI protocols in a multi-hop IoT test bed using

real IoT hardware.

The rest of this paper is organized as follows: Section 2 gives

our threat model and assumptions. Section 3 presents related

work. Section 4 presents the PKI4IoTlife cycle. Section 5 presents

the enrollment and profiling plus compression (5.1, 5.2), and puts

PKI4IoTin context with respect to the establishment of trust and

practical feasibility for IoT (5.3, 5.4). Section 6 presents the imple-

mentation. Section 7 gives evaluation results. Section 8 gives fur-

ther security considerations before concluding the paper.

2. Threat model and assumptions

2.1. Trust base

We consider the hardware of the constrained device, and the

local software to be trusted. We assume there is at least one CA ca-

pable of generating certificates which can be trusted by the device

through an initial trust store. We assume the NIST hash and crypto

recommendations for which types of algorithms and key length to

use for the upcoming decade the will stay valid.

2.2. Attack model and security guarantees

An attacker can eavesdrop all communication between the in-

volved entities. They can block or modify messages in transit, or

store and replay any message sent, with the goal to masquerade

as a trusted entity, or to get hold of any secret message content in

plaintext. A communication system should withstand this type of

attacker, and still offer authentication and confidentiality through

secure communication. For a single communication session, mech-

anisms to detect modified or replicated/replayed message attacks

are needed. For a complete communication system, secure and

efficient key management mechanisms are needed, including key

provisioning and key revocation. Providing initial secure and effi-

cient building blocks for key management that can withstand these

types of attackers are our main contributions.

2.3. Limitations

The proposed system does not itself protect against denial-of-

service attacks, in which the perpetrator floods a victim with erro-

neous request; however, PKI4IoT makes it very hard to an attacker

to take control of an IoT device in the first place. For DoS protec-

tion, additional firewall mechanisms should be deployed. As men-

tioned, since we assume the hardware to be trusted, an attacker

who could gain physical access to the device could potentially ex-

tract a private key, compromising the system. To prevent this, addi-

tional secure hardware should be deployed. To ensure software se-

curity, measures such as fuzzing or formal analysis should be used.

3. Related work

With growing interest in IoT and the accelerating process of

digitalization, IoT security has received considerable attention. The

existing security paradigm for resource-constrained devices are

still based on pre-shared key solutions, or PSK, where devices have

a secret phrase pre-installed which is used to create the keys for

secure connections. This avoids the higher computational cost of

public key operations, but is more vulnerable. A leaked shared se-

cret requires updating all devices in the system, whereas a com-

promised certificate can be individually revoked.

3.1. PKI for IoT

Industry actors have identified the need for a PKI which en-

compasses the IoT, for IoT products and services to be sustainably

successful (Research, 2016) but existing state-of-the-art solutions

are severely restricted. Modern public key solutions can mainly be

grouped in two categories. One, such as described in the DigiCert

whitepaper, are mainly comprised of “big” IoT devices with rela-

tively few resource constraints (DigiCert, 2017). These devices can

run standard X.509-based protocols with little or no modifications.

Others, like Managing , rely on offloading certificate management

operations to gateways or other powerful devices. This has been

the previous state-of-the-art in research (Raza et al., 2016; Ting

et al., 2018). While the delegation approach reduces the load on

the resource-constrained devices, it breaks the end-to-end security

and introduces additional entities that need to be trusted by all

parties. Initial attempts to provide Internet standard PKI solutions

for IoT has been presented in Raza et al. (2017) , in which the au-

thors show that running DTLS over CoAP is feasible, and that the

existing X.509 certificate format could be used, albeit with high

overhead.

3.2. Existing enrollment solutions

There are existing proposed standards for certificate enrollment

which are designed for, and hence suitable for, non-constrained

J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658 3

Fig. 2. PKI4IoTlife cycle overview, illustrating the IoT device life cycle events, from

manufacturing firmware installation, over initial enrollment to normal operation

state, with the possibilities of re-enrollment and revocation or expiration.

devices: SCEP (Gutmann, 2019), CMC (Schaad and Myers, 2008),

CMP (Adams et al., 2005), and EST (Pritikin et al., 2013), the

newest. Out of these EST has the best support for automated oper-

ations, while being relatively lightweight.

3.3. X.509 alternatives

There are alternatives to X.509 certificates. So-called implicit

certificates have a smaller memory footprint. Security solutions

based on implicit certificates have been shown to establish secure

connections between IoT devices (Park, 2017). Until now, there has

not been any security infrastructure that allows implicit certificates

to be used when a IoT device wants to communicate with an arbi-

trary Internet device. Recently, implicit certificates certificates are

being tested for V2X communication in the US. The IEEE 1609.2

standard defines implicit certificates for use by Wireless Access in

Vehicular Environments (WAVE) devices (Ieee, 2016), but the up-

take and applicability across the IoT domain remains unclear. There

have been previous attempts at creating more compact ECC-based

certificates which could use either implicit ECQV or ECDSA signa-

tures (Ford and Poeluev, 2015). They present similar size reductions

to the ones presented in our results, but have not been demon-

strated in any PKI. This highlights the requirement to keep X.509

compatibility – a requirement that is likely to remain valid for sev-

eral years to come.

3.4. Compression mechanisms

There are efforts to reduce the overhead of sending cer-

tificate chains by allowing on-the-fly compression during the

initial handshake, using general purpose compression mecha-

nisms (Ghedini and Vasiliev, 2018). Requiring additional compres-

sion mechanisms would create further overhead for constrained

devices. More importantly, with certificate-domain knowledge,

more compact representations are possible in relation to general

purpose compression.

4. PKI4IoT Life-cycle

This section explains the life cycle events that need to be sup-

ported by a PKI for IoT. For long-running connected IoT deploy-

ments, the system needs to be able to evolve, including security

upgrades. Additionally, in order to scale to billions of IoT devices,

fully automatized security management is needed. Fig. 2 gives an

overview of the relevant life cycle events for PKI4IoT, and the rela-

tionship between them.

4.1. Bootstrapping

A recent survey of secure bootstrapping mechanisms relevant

for IoT highlights the lack of agreed-upon standards, and even def-

initions (Sarikaya et al., 2018). One of several cited definitions de-

fines bootstrapping in the context of IoT as “the process by which

the state of a device, a subsystem, a network, or an application

changes from not operational to operational”. The vagueness of the

term is reflected in the wide variety of current solutions, often

times dependent on hard-coded initial parameters. These solutions

have problems both in terms of security and scalability. While the

solutions presented in this paper cover part of the bootstrapping

stage, a purely standard based solution encompassing all network

layers remains to be defined.

4.2. Certificate enrollment and renewal

Even if obstacles related to initial bootstrapping are overcome,

a device must have ways of acquiring and verifying valid security

keys for the continued operation. In order to achieve fully auto-

mated key management for IoT, new solutions for certifying the

security keys must be found. While there are enrollment solutions

for traditional Internet devices, they are not adjusted to resource-

constrained IoT devices and existing IoT protocols. Since no PKI is

stronger than its weakest link, secure key management is crucial.

4.3. Certificate revocation

A security infrastructure must handle revocation of trust, if

a previously trusted entity for any reason should no longer be

granted access to certain assets. Traditional solutions with black-

lists for revoked certificates, CRLs, causes unacceptable overhead

for constrained devices and networks. Alternatives include pro-

tocols such as Online Certificate Status Protocol, OCSP, with less

memory footprint but which instead requires more communica-

tion steps. Additionally, certificates carry a final validity date which

gives a limit after which the responsible certificate authority could

deny certificate renewal. For some scenarios, short certificate va-

lidity periods could give uncertainty bounds.

Out of the above presented functions, this paper focuses on pro-

viding secure certificate enrollment (and re-enrollment), while re-

ducing the certificate-handling overhead connected with existing

X.509 certificates.

5. PKI4IoTCore components

In the following the challenge of a secure and lightweight PKI

for IoT is addressed in two steps. First a solution for secure en-

rollment is presented, and then how to reduce the certificate us-

age overhead. The resulting PKI should be practically usable for IoT

scenarios, hence the final subsection shows how the proposed new

mechanisms are compatible with effort s of removing human inter-

vention from the certificate management.The following entities are

relevant for the scenarios described below:

Factory CA an entity that issues the manufacturer-installed cer-

tificate for the IoT device.

Enrollment CA the entity that the IoT device contacts to do en-

rollment, or re-enrollment.

The IoT device in the scenarios we consider, the IoT device is

deployed with a pre-installed certificate from the factory CA,

the knowledge of which enrollment CA to contact, and the

means to verify the identity of the enrollment CA.

6LoWPAN border router For the case where the certificates used

in the handshake are profiled and thus compressible, the

border router transparently compresses the certificates en-

tering the low power radio network and decompresses them

as they leave the radio network. Fig. 3 shows the presented

actors in their respective domains.

4 J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658

Fig. 3. PKI4IoTfrom a communication perspective, showing the IoT device life cy-

cle events in their respective domains: in factory environment, during deployment,

and post-deployment, including communication, certificate re-enrollment and revo-

cation.

5.1. X.509 certificate enrollment for IoT

One of the most urgent challenges to tackle is the provision-

ing of new certificates to devices as they are being deployed. The

mechanisms to do so must be secure themselves, and preferably as

close to existing PKI solutions as possible to reduce the barriers for

industrial adoption. At the same time, the mechanisms must work

on resource-constrained devices, often without any input device.

Fig. 3 highlights the entire PKI4IoTprocess with a focus with pre-

and post-deployment operations.

5.1.1. Pre-enrollment in manufacturer environment

To enable a true PKI solution for IoT where certificates are used

also for initial authentication, an IoT device needs to have certifi-

cates pre-installed. The minimal initial truststore needs to contain

a factory certificate the device can use to identify itself plus the

corresponding private key, and at least one trusted CA certificate

that can be used to validate the server to be used for enrollment.

This pre-loading of keys and certificates are preferably done in

a trusted manufacturer environment, for example when installing

the initial firmware to be used.

5.1.2. Automated enrollment protocol design

In a typical enrollment process, a client sends a certificate sign-

ing request (CSR) and gets a response with a newly-created certifi-

cate. Either the requesting client or the certificate authority server

(CA) can generate a public-private key pair. In the former case, the

client generates its own key pair and sends a CSR containing the

public key to the CA. The CA in turn generates a certificate by bind-

ing the public key with the identity and other necessary informa-

tion, and sends the digitally signed certificate back to the client.

Unlike certificate enrollment done with traditional Internet hosts,

we cannot expect the enrollment of IoT devices to involve any hu-

man out-of-band operation. A fully automated enrollment process

is crucial for enabling PKI for IoT.

We have previously presented a solution for basic enroll-

ment functionality for constrained devices in He et al. (2019) . In

this work we build upon the previous solutions. We integrate

lightweight certificate handling, add functionality for re-enrollment

and verify the enrollment process with an off-the-shelf third-party

CA software provider that implements the server-side support.

We have chosen to design the enrollment protocol in line with

the Enrollment over Secure Transport protocol (EST) that is used

for enrollment over HTTP. Unlike previous enrollment solutions for

conventional internet (SCEP, CMC), EST does not require additional

crypto operation implementations for the sake of enrollment and

relies only on the transport layer security, which is particularly

useful for resource-constrained IoT devices.

Enrollment layer . The basic enrollment services are provided

through EST servers responding to client calls to / crts , / sen and

/ sren . These are abbreviated versions of the corresponding calls

for EST over HTTP: / cacerts , / simpleenroll and / simplereenroll . The

path is shortened to a minimum to save additional overhead. The

/ crts request serves to update the client with additional CA cer-

tificates needed for subsequent certificate verification. The / sen re-

quest contains the initial certificate signing request, CSR, to apply

for a certificate from the enrollment CA. Finally, the / sren is used

for subsequent certificate renewals.

CoAP layer . CoAP is a lightweight UDP-based protocol specifi-

cally designed for constrained IoT networks. The enrollment pro-

cess sends CoAP messages of type confirmable, which provides re-

liability on top of the potentially lossy links. HTTP GET and POST

requests in EST are mapped to corresponding GET and POST re-

quests in CoAP, with the corresponding mapping of return values

and error codes. Where needed, a couple of new CoAP content for-

mats are introduced, in line with the proposed standard. Since EST

messages can grow large, support for block-wise transfer is needed.

All payload data is sent in binary format (van der Stok et al., 2019).

DTLS layer . The enrollment message exchange is secured

through the creation of a DTLS session between the IoT device and

the enrollment CA. The session is created through a certificate-

based handshake, where client and server certificates are ex-

changed. The message flow of a DTLS handshake and subsequent

enrollment operations are shown in Fig. 4 .

Lower layers . Below DTLS are the UDP and IP layers. For IoT

devices that should be globally available, IPv6 is the future-proof

alternative that avoids address scarcity or the need for NAT solu-

tions. For IoT devices communicating over 802.15.4 radio networks,

6LoWPAN is used to handle IP packets over the lossy radio links.

6LoWPAN does its own fragment and reassembly of packets and

does not support already fragmented IP packets, hence the need

for the enrollment process to make use of CoAP block-wise trans-

fer to ensure that DTLS records fit within a single datagram.

5.2. Lightweight X.509-compliant certificates for IoT

The above presented enrollment solution makes it possible for

IoT nodes to safely acquire certificates in an automated manner.

The current Internet PKI is centred around the use of certificates,

predominantly in the X.509 format, with some limited exceptions

such as Card Verifiable Certificates, CVC, used for smart cards. The

X.509 certificates are relatively heavy, causing significant overhead

when existing PKI solutions are being ported to more resource-

constrained IoT devices. The structure of existing X.509 certificates

is given in Fig. 5 . Previous work has shown that the X.509 format

can also be used on battery-powered devices, but naively using

existing X.509 certificates causes too much overhead (Raza et al.,

2017). Hence there is a need to optimize the certificate handling

for the IoT.

The structure of the X.509 certificate format is shown in Fig. 5 .

The main parts are: (i) Information about the subject, the issuer

J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658 5

Fig. 4. Enrollment with certificate based DTLS-handshake.

and details such as validity dates (ii) the public key of the sub-

ject and the algorithm used (iii) a Certificate Authority (CA) signa-

ture and the algorithm used plus, optionally (iv) extensions.

There are DTLS usage guidelines specified for resource-

constrained IoT devices (Tschofenig and Fossati, 2016). This gives

recommendations on which cipher suites to use, and serves as a

source for current best practices. Below, we present actions to re-

duce the space needed for PKI certificates: profiling, efficient en-

coding and omission of implied fields.

5.2.1. An X.509 certificate profile for IoT

Based on the knowledge of current protocols and IoT device

constraints, we propose the following certificate profile, which we

call the XIOT profile, which can be applied to reduce certificate

sizes without breaking X.509 compatibility. A summary is given in

Table 1 .

Version number . The X.509 standard has not moved beyond ver-

sion 3 since 2008. With the introduction of certificate extensions,

new certificate fields can be added without breaking the format,

making version changes less likely. Therefore the XIOT profile fixes

the version number to 3.

Serial number . The serial number together with the identity of

the CA is the unique identifier of a certificate. The standard does

not specify the signedness, but following the DTLS IoT guideline,

the XIOT profile requires an unsigned integer.

Fig. 5. X.509 certificate structure with compound and primitive fields.

Signature algorithm . For the profile, the signature algorithm is

fixed to ECDSA with SHA256.

Issuer . This is used to identify the issuing CA through a se-

quence of name-value pairs. The IoT profile is restricting this to

one pair, common name and associated string value. The require-

ment is that for global usage, the common name must uniquely

identify the CA. Alternatively, for IoT deployments where the trust

and communication relations are be of limited scope, a non-unique

common name could be used.

Table 1

Summary of XIOT profile field restrictions.

Field Value

Version 3

Serial number Unsigned integer

Signature ecdsaWithSHA256

Issuer CommonName containing CA name as

UTF8String

Validity UTCTime in format YYMMDDhhmmss

Subject EUI-64 as UTF8String

Subject public key info ecPublicKey followed by secp256r1 and

64 byte uncompressed ECC public key

Issuer and subject unique Id Not present

Extensions Any extension

Signature algorithm ecdsaWithSHA256

Signature ECDSA-Sig-Value

6 J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658

Fig. 6. A XIOT profiled and encoded X.509 certificate, where all fields with known

values have been removed.

Validity . X.509 certificates need a ‘not before’ and a ‘not after’

date. The profile mandates using the UTCTime-format, YYMMD-

Dhhmmss, for the most compact representation.

Subject . The subject section has the same format as the issuer,

identifying the receiver of the public key through a sequence of

name-value pairs. This section can be restricted to a single pair,

subject name and associated (unique) value. For an IoT device, the

MAC-derived EUI-64 serves this purpose well.

Subject public key info . This section contains the public key and

identifies the key algorithm. For IoT devices, elliptic curve cryp-

tography (ECC) algorithms can fulfill security requirements with

shorter key lengths and less computational overhead compared

with older RSA-based cipher suits. A 256 bit ECC key, correspond-

ing to a 3072 bit RSA key, would meet NIST based recommen-

dations for many years ahead. A reasonable restriction following

the DTLS IoT profile recommendation is fixing the algorithm to

secp256r1 , sometimes refereed to as prime256v1 . (For a longer mo-

tivating discussion see Forsby, 2017 .)

Extensions . To maintain forward compatibility, the profile does

not restrict the use of extensions. By the X.509 standard, any de-

vice must be able to process eight extensions types. Since only four

of them are critical for IoT, the profile makes the other four op-

tional. The following extensions remain critical: - Key Usage - Sub-

ject Alternative Name - Basic Constraints - Extended Key Usage

Certificate Signature algorithm . This field duplicates the info

present in the signature algorithm field. Fixed to ECDSA with

SHA256.

Certificate signature . The field corresponding to the signature

done by the CA private key. For the IoT profile, this is restricted

to ECDSA signatures.

5.2.2. Encoding and compression

By combining the use of CBOR encoding (Bormann and Hoff-

man, 2013) instead of ASN.1 together with the knowledge of the

XIOT profile restrictions, we are able to reduce the IoT certificates

size by more than 50%. The resulting certificate structure is shown

in Fig. 6 , where all the fields which are known by the profiling

have been omitted. The CBOR template corresponding to the cer-

tificate profile is shown in Fig. 7 .

For the presently-used DTLS v1.2 protocol, in which the hand-

shake messages are unencrypted, the actual encoding and com-

pression can be done transparently at a 6LoWPAN border router,

which allows the server side to remain unmodified. For DTLS v1.3,

the encoding needs to be done fully end-to-end, by adding addi-

tional functionality to the server. A handshake with an unmodi-

Fig. 7. The XIOT CBOR profile of X.509 expressed in Concise Data Definition Lan-

guage (CDDL).

Fig. 8. The serial number field of an X.509 certificate encoded in ASN.1 DER (36

bytes).

Fig. 9. The serial number field of an X.509 certificate after XIOT profiling and CBOR

encoding (9 bytes).

fied server and a compressing/decompressing gateway is shown in

Fig. 10 .

Below we go through the relevant certificate fields, and the ex-

pected size reductions achieved by the compression. Figs. 8 and 9

give a detailed illustration of how the CBOR encoding achieves in-

creased compactness.

Version number . Assuming a fixed version 3 flag, this field is

omitted and recreated when needed. This saves 5 bytes.

Serial number . With no known structure, the savings only come

from the CBOR encoding. Encoding overhead is reduced by one

byte.

Signature algorithm . The signature algorithm is known from the

profile and is omitted in the encoding. This saves 12 bytes.

Issuer . Following the profile restriction to allow only common

name, the common name type field is omitted. The total field over-

head goes from 13 bytes to one byte.

Validity . This is encoded as UnixTime, which reduces the size

from 32 to 11 bytes for a ‘not before’-’not after’ validity pair.

Subject A subject identified by an EUI-64, based on a 48bit

unique MAC id, can be encoded using only 6 bytes with CBOR. This

J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658 7

is a reduction down from 36 bytes for the corresponding ASN.1 en-

coding.

Subject public key info . The algorithm identifier is known from

the profile restrictions and is omitted. One of the public key ECC

curve point elements can be calculated from the other, hence only

one curve point is needed (Jivsov, 2014). These actions together re-

duce size from 91 to 35 bytes.

Extensions . Some minor savings can be achieved by the more

compact CBOR encoding.

Certificate signature algorithm . Since this is fixed by the profile

restrictions, it can be omitted, saving 12 bytes.

Signature . By omitting unneeded ASN.1 information, the over-

head for sending the two 32-bit values is reduced from 11 to 2

bytes.

5.3. PKI4IoTchain of trust

A key reason for the success of existing PKI is that it can be

used to establish trust between actors without previous shared in-

formation. For IoT devices, not only the individual certificate causes

overhead, but also the number of certificates needed for trust es-

tablishment.

5.3.1. Challenges

A client that wants to verify the authenticity of a server can

check if the public certificate is signed by an authority the client

already trusts. In this case the single server certificate is sufficient.

But often a chain of certificates are needed; the server certificate

is signed by a server CA, signed by a shared trusted root CA, pos-

sibly with additional intermediate CA:s in between. In addition,

specific use cases can have further constraints such as the use of

pseudonym CA:s, capable of issuing a large number of pseudony-

mous certificates for privacy reasons in PKI for the automotive in-

dustry.

Devices with powerful CPUs and memory have no problems re-

ceiving, handling and checking long chains of certificates up to a

shared common trusted root. For IoT devices handling long chains

might not be feasible. The exact needs, and hence the optimization

possibilities will differ between different use cases.

5.3.2. Solutions

To address the overhead of trust establishment, we revisit the

trust relationships presented in the beginning of 5 to discuss

which certificates need to be exchanged as part of the initial DTLS

handshake.

The general case . The most general case is where the enroll-

ment CA has no previous direct trust relationship with the factory

CA. Our current solution can already handle this scenario by hav-

ing multiple root CA certificates pre-installed, but further investi-

gations on the most efficient solutions for the general case are de-

ferred to future work.

A typical IoT case . For IoT deployments, it is relevant to consider

scenarios where the factory CA and the enrollment CA have cer-

tificates issued by the same root CA. Alternatively, the factory CA

and the enrollment CA have been issued by the same intermediate

CA. In both of these cases, the IoT device could already has been

given the relevant issuing CA and root CA certificates in its initial

truststore.

DTLS handshake optimizations . Based on the above scenario, we

propose DTLS handshake optimizations for the case where there is

a previous trust relationship between the IoT device and the server.

By the TLS standard, the handshake certificate messages from ei-

ther the server or client side are supposed to contain the full chain

of certificates between the endpoint and the root CA. Only the self-

signed certificate that specifies the root certificate authority may

be omitted from the chain, because the remote end already has it

Dierks and Rescorla (2008) . We suggest relaxing this requirement,

by allowing the certificate messages to only contain the missing

server certificates.

We suggest that this procedure can be formalized as follows:

The client can advertise the preferred server side authentication

method through the ClientHello message. Currently, if the X.509

method is selected, the server will send the full chain of certifi-

cates. By changing the TLS Certificate Types flag from indicating

the standard X.509 to X.509_SINGLE, the client can indicate that it

only expects the server’s own certificate, since the client already

has the other certificates needed to validate it.

5.4. PKI4IoT: Economical considerations

Besides the practical necessities for automating all aspects of

PKI for IoT, there are also economic incentives. For IoT providers

to accept the costs of individual certificates for a large number of

devices, the prices must be lower than prices for the certificate

services currently available. The manual verification steps of cur-

rent PKI solutions form bottlenecks in terms of both CA perfor-

mance/capacity and certificate cost. To be able to provide cheap

but secure IoT devices, a zero-touch PKI solution is needed.

With our proposed system, based on pre-installed factory cer-

tificates and provisioning of new certificates using EST-CoAP, the

issuing of certificates can be fully automated. This is crucial for re-

ducing the cost of a single certificate. The CA needs to be capable

to issue X.509 certificates following the XIOT certificate profile for

the resulting issued certificates to be compressible, but no other

modifications are needed.

6. PKI4IoT: Implementation

PKI4IoThas been developed in parallel with the evolution of the

EST over CoAPs draft in IETF (van der Stok et al., 2019). The tar-

get environment is the Contiki operating system, which provides

protocol support for IPv6, UDP and CoAP. The TinyDTLS library has

provided the needed cryptographic functions, and acted as a start-

ing point for the entirely certificate-based DTLS version becoming

part of PKI4IoT. In addition, we have added point decompression

support from the μECC library, 1 and CBOR functionality from CN-

CBOR. 2 When the device receives a compressed certificate as part

of the handshake message exchange, as seen in Fig. 10 , the DTLS

component will use the new XIOT component to reconstruct the

original certificate. The XIOT component is also used to compress

the device certificate before sending it. The relevant parts of the

device software stack is illustrated in figure 10.

Before initial enrollment, the device uses its pre-installed fac-

tory certificate. After enrollment it will have the certificate as-

signed by the CA during the enrollment process stored in its cer-

tificate store. This means the factory certificate is normally only

used once. Consequently it is less crucial that the CA used to is-

sue the factory certificate follows the IoT profile, the main savings

follow from using a compressible certificate assigned by the enroll-

ment process.

To support DTLS certificate based handshake, and the EST-CoAP

enrollment operations, a certificate store component handles sav-

ing certificates to node flash memory, using a modified version of

the Contiki file system Coffee.

Since the enrollment messages might not fit in the standard

MTU frames of 1280 bytes, the Contiki CoAP block-wise transfer

functionality is important.

1 https://github.com/kmackay/micro-ecc .
2 https://github.com/cabo/cn-cbor .

8 J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658

Fig. 10. DTLS handshake with certificate compression and decompression.

The upcoming standard compliant parts of EST-CoAP have been

interop tested with two server implementations, from partners and

external IETF members.

7. PKI4IoT: Evaluation

The evaluation is done to demonstrate both the feasibility of

the proposed integrated design, and the resulting savings in terms

of communication and energy usage overhead. The implementa-

tion, which handles both regular X.509 certificates and the pro-

posed profiled and compressed version, is tested in both single and

multip-hop scenarios.

7.1. Experimental setup

For the experiments on ARM Cortex M3-based CC2538 devices,

Zolertia Fireflies have been used. The relevant characteristics are as

follows: a current draw of 7.12 mA at 16 MHz clock speed without

radio activity, and 20 mA or 24 mA with radio in receive or trans-

mit mode, respectively. The platform also provides hardware sup-

port for AES and ECC cryptographic operations. Complete specifica-

tions can be found on the Firefly wiki and in the CC2538 datasheet

(Instruments, 2015; Zolertia, 2018).

For all scenarios, one Firefly node is directly connected to a host

computer, serving as a low-power radio network border router. The

device is only forwarding the packets to a Linux process running

on the host computer, and hence neither memory nor process-

ing power is limited for the border router. The border router can

compress and decompress certificates on the fly without signifi-

cant delays. The main test enrollment server is running on the host

computer. Tests with remote servers are also conducted. These net-

working delays are negligible compared with the low power radio

network delays.

The DTLS communication has been tested both in single-hop

and multi-hop scenarios. In all scenarios a Firefly acting as a client

endpoint contacts the test server through the border router. For the

multi-hop scenarios another Firefly node acts as an intermediate

router, preventing any direct access between the border router and

the end client.

7.2. Micro benchmarks

7.2.1. HTTPs and CoAPs header sizes

CoAP is designed for minimal overhead, and when doing enroll-

ment, the CoAP overhead is very predictable. The requests contain

a server path. This could be as small as 5 bytes for the cacerts re-

quest, / crts , and 4 for the simple enroll request, / sen . These are the

settings we suggest to use, but the standard also allows longer hi-

erarchical paths.

In contrast, EST over HTTP offers a wide range of possible con-

figuration options, each with their own set of parameters. We have

compared the HTTP header overhead from the samples given in

the standard (Pritikin et al., 2013) with samples from a test server,

and determined expected minimal bounds. Table 2 shows the re-

sults for the comparison of the protocol overhead when doing

enrollment over CoAP and corresponding operations over HTTP.

These are the values before encryption, which in turn adds com-

putational overhead as well as minor (D)TLS headers. While the

overhead caused by the HTTP headers are acceptable for pow-

ered devices with high capacity network connections, for con-

Table 2

Header sizes for EST calls over HTTP and CoAP.

Message Header size (B)

CoAP HTTP

cacerts request 6–26 > 160

response 3 > 118

enroll request 8–28 > 235

response 3 > 125

J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658 9

Table 3

Typical certificate size ranges.

Crypto Size

RSA 2048 0.8kb–3kb

ECC no explicit profile 296–2000

ECC profiled 296–350

ECC compressed 140–160

strained devices and lossy networks the CoAP savings could be

crucial.

7.2.2. Certificate sizes

Table 3 presents expected certificate sizes for the recommended

RSA and ECC key sizes. These size values are for certificates in bi-

nary representation. In base64 encoding they would be 33% big-

ger. RSA-based certificates with the recommended 2048-bit keys

and sha256 signatures have a lower size bound around 800 bytes,

where only common name is included, and minimal extensions.

Due to the usage of extensions, no upper bound can be deter-

mined, but commonly-found web certificates range between 1.5 kB

and 3 kB. In contrast, a profiled ECC-based certificate is less than

50% of the minimal RSA certificate, and the compression reduces

the size with another 50%.

It is important to note that these reductions are based on the

domain-specific knowledge on which fields can be dropped and

recreated, as seen in 6 . Using gzip/deflate on certificates can re-

duce non-profiled certificates up to 30%, but it cannot further re-

duce the size of already-profiled certificates. (Figs. 1 and 11)

Fig. 11. The constrained device software stack.

Fig. 12. Comparison of IoT client software module memory usage.

7.2.3. Memory overhead

The current lightweight certificate implementation adds 3.7 kB

of ROM and 1.1 kB of RAM, shown as the XIOT component in the

diagram. Seen in comparison to the memory footprint of other pro-

tocols, the ip stack and other operating system modules in Fig. 12

the memory footprint of the added XIOT component is relatively

small. Some details are worth noting: The memory requirements

for the device netstack will vary depending on the device usage re-

quirements, such as the need for concurrent connections and num-

ber of neighbours. Specifically, if the resource-heavy handshake op-

eration sets the bounds for the needed radio queues and resend

buffers, the introduction of the compression mechanism could al-

low for shorter queues. These savings are in the range of a few

hundred bytes up to 1.5 kB of RAM, which more than offsets the

RAM memory usage of the XIOT component.

7.3. Energy consumption

One of the main limiting factors for battery powered devices is

energy usage. Knowing, understanding and limiting the energy us-

age for any new functionality is crucial if the mechanism should be

possible to use in real deployments. Below we show how reduced

communication needs corresponds to reduced energy needs.

7.3.1. Energy consumption modeling

Using the Energest timer system in Contiki we measure

the time spent for relevant protocol stages and active pe-

ripheral. This allows us to calculate the consumption based

on current and voltage levels from the CC2538 hardware

datasheets (Instruments, 2015).

Listening for radio data is almost as expensive as sending.

Hence, it is beneficial to minimize the total data traffic, not just

the amount of data the sensor needs to send. To benefit from the

traffic reductions, an efficient radio duty cycling protocol is needed.

It is worth observing that since CPU usage is less than the en-

ergy cost of radio usage, doing some more local computation to

reduce the data transfer can be beneficial.

Based on the discussion on certificate chains in 5.3.2 , we con-

sider two main scenarios. In one general case, a single root certifi-

cate pre-installed in the client trust store is not enough to verify

the server certificate. Thus, the server needs to send a chain of cer-

tificates as part of the Server Certificate message in the handshake

procedure in order to establish the chain of trust. In one typical

IoT case, the node has already obtained the necessary certificates

to verify the signature of the server certificate. In the latter case,

the Server Certificate message only needs to contain the missing

server certificate.

10 J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658

Fig. 13. Comparison of energy consumption for certificate message transmissions.

Fig. 14. DTLS handshake completion time in a Zolertia Firefly IoT device with the

Contiki.

7.3.2. Energy measurement results

In the experiment, we measure and calculate the consumption

for the parts of the handshake procedure corresponding to certifi-

cate exchanges. Each experiment is repeated at least 200 times.

The detailed energy consumption results are shown in Fig. 13 . As

expected, the highest energy consumption is found for the case

where a certificate chain of length 2 is sent. Here, the communica-

tion cost is 9 mJ. Just compression reduces the consumption with

20%. The case where the certificate chain can be shortened, and

only the server certificate is needed, results in a 26% reduction.

The best results are achieved when combining the methods, result-

ing in a 58% reduction. These results are focused on the client end

node. Taking also the energy consumption of the relaying nodes

into account in a multi hop network would yield higher total trans-

mission savings, but the results would look very different between

different radio configurations and environments.

7.4. Round trip times

Round trip times are standard measurements used to deter-

mine the usability of a system. Servers need to adjust their time-

out delays based on expected transmission times. With a timeout

shorter than is necessary, a constrained device might not be able

to complete the DTLS handshake. On the other hand, long time-

outs occupy server resources and limits the number of connec-

tions that can be handled in a time period. For the DTLS hand-

shake in a clean radio environment, the local node cryptographic

processing is the most time-consuming activity. As can be seen in

Fig. 14 , the certificate compression only very marginally improves

the expected handshake time for our two-hop test setup. The same

lab test setup running during office hours with more neighbour-

ing WiFi traffic shows different numbers, where more frequent ra-

dio retransmissions make the version with compressed certificates

come out ahead, with average savings of 12%. The figures illustrate

that for IoT scenarios in lossy radio environments, small savings

get amplified.

8. PKI4IoT: Security considerations

The major components of the proposed PKI are based on exist-

ing standards, which have been subject to detailed security analy-

ses. Here we highlight the relevant findings, analyze missing parts,

and assess if the new proposed solutions risk exposure new vul-

nerabilities.

A security solution may have vulnerabilities both in the proto-

col design and the implementation. We do not claim to address all

potential code vulnerabilities associated with the embedded oper-

ating system and its parts; such efforts are ongoing in parallel by

related researchers and Contiki developers. We focus here on the

protocol vulnerabilities, and the risks introduced by new proposed

components.

Protocol risks . DTLS is specifically designed to offer security for

CoAP-based communication, suitable for resource-constrained de-

vices. While the presently-used DTLS version 1.2 does not explic-

itly forbid the known insecure MD5 hashing algorithm, later rec-

ommendations and those specifically the presented XIOT profile do

not allow MD5 or SHA1 to be used. The choice of using elliptic

curve cryptography is motivated by the lower overhead compared

with RSA. For long term usage, one should consider the risks of

current cryptho methods rendered obsolete by advances in quan-

tum computing. A study done at Microsoft Research show that ECC

algorithms might be more susceptible to quantum computing at-

tacks compared with RSA, but any such attack on the relevant rec-

ommended key lengths is still far out of reach (Roetteler et al.,

2017).

Long lived CA certificates . The EST over CoAP protocol inher-

its the characteristics of the plain EST protocol that was de-

signed for HTTP-based communication, which include security

weaknesses (Pritikin et al., 2013; van der Stok et al., 2019). Some

vulnerabilities, such as plaintext exposure of client passwords

through Basic authentication, are made obsolete by the draft stan-

dard (van der Stok et al., 2019). One remaining issue is the usage

of an implicit truststore, which in our scenarios is pre-installed in

the node at the manufacturer premises. Until there are accepted

revocation mechanisms in place that can be used for IoT devices,

the potentially long-lived CA certificates in the implicit truststore

need to be trusted by the node for as long as the are kept in the

store. A risk reduction strategy is to overwrite the pre-installed CA

certificates as part of the enrollment process. This reduces the risk

of rouge CAs, but introduces new complexity if the node is resold

and needs to be reset to factory settings.

The border router . In the case of DTLS 1.2 certificates, compres-

sion/decompression during the handshake can take place at a bor-

der router at the edge of 6LoWPAN network. It is important to ob-

serve that this does not require the border router to be a trusted

entity, since the communication is verified end-to-end between

client and server. The border router may waste node resources by

modifying messages, causing a handshake to fail, but the malicious

behavior of a 6LoWPAN border router is easily detectable by intru-

sion detection systems.

Initial device time . An ongoing design challenge is how to re-

liably get the initial time when a resource-constrained device is

bootstrapping. This is partially addressed by the proposed BRSKI

draft (Pritikin et al., 2019). There, it is noted that a device doing

bootstrapping will need to be flexible with the certificate lifetime

(i.e., the “not before” and “not after” times) of the certificate pre-

sented to it, since no secure time has been established. By intro-

J. Höglund, S. Lindemer and M. Furuhed et al. / Computers & Security 89 (2020) 101658 11

ducing the concept of “current reasonable date” (CRD), a device

which has access to the compile time of its firmware can estab-

lish a lower bound for the “not before” date.

The corresponding time-related issue on the server side is that

a server responding to a bootstrap request can accept a special

value, “99991231235959Z” by the X.509 standard, for the “no-

tAfter” field of the presented factory certificate, which can be

used to indicate that a certificate has no well-defined expiration

date (Cooper et al., 2008).

The current test implementation uses a trusted in-network

server as time source, leaving a more refined procedure for future

work.

New functionality . The new component for certificate encoding

and decoding utilizes a CBOR parser and ECC library functions, and

is not expected to add further vulnerabilities. The compact encod-

ing format, CBOR, is designed to be easily parsed on constrained

devices. A simple parser reduces the attack surface. A strict de-

coding mode is necessary to distinctly decode the certificate at

hand (Bormann and Hoffman, 2013). A rogue server could send

faultily-compressed certificates, which would make the node spend

energy trying to decompress it, but this wasted effort is less than

the full energy cost of validating a certificate with correct format

but invalid signature. Hence this new attack is less probable than

already existing possibilities for attacks on the availability security

service.

IoT devices as attackers . The introduction of billions of IoT de-

vices opens up possibilities for new types of DDoS attacks, with

IoT nodes as attackers. PKI4IoTis a major step in bringing strong

security to IoT and preventing nodes from becoming compromised.

However, these devices may still be physically cloned and hacked.

A new and improved firewall compatible with IoT protocols may

still be needed to mitigate attacks to the global Internet from IoT

devices and vice versa. In addition, servers should employ basic

protection strategies such as a back-off after potentially malicious

failed connection attempts in order to limit the impact of an active

attacker.

9. Conclusion

In this paper we have presented challenges for enabling PKI for

IoT, and new important PKI building blocks as answers to two of

those challenges: secure enrollment and certificate overhead re-

duction. We have shown that they are capable of successfully per-

forming their tasks, securely performing initial enrollment as well

as re-enrollment, and reducing the X.509 overhead for the tar-

get IoT scenarios. These contributions are bringing functional full-

fledged PKI closer to real IoT deployments. For maximum impact

and interoperability across different vendors we are pushing both

enrollment and lightweight certificates as standards in IETF, where

the enrollment protocol draft is close to being accepted as an offi-

cial RFC.

To make the PKI more complete, new solutions for certificate

revocation and status checking are being designed, and more de-

tailed chain of trust scenarios for IoT devices in vehicle communi-

cation and health care domains are being investigated.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

This research has partly been funded by The Swedish Founda-

tion for Strategic Research (SSF), Vinnova, Formas and Energimyn-

digheten under the Strategic Innovation Program for IoT (SIP-IoT)

SecureCare project; partly by the H2020 ECSEL SECREDAS (grant

ID: 783119) project; and partly by the H2020 CONCORDIA (Grant

ID: 830927).

References

Adams, C. , Farrell, S. , Kause, T. , Mononen, T. , 2005. Internet x.509 Public Key Infras-

tructure Certificate Management Protocol (cmp) . RFC 4210, RFC editor.
Bormann, C. , Hoffman, P. , 2013. Concise Binary Object Representation (cbor) . RFC

7049, RFC Editor.
Cooper, D. , Santesson, S. , Farrell, S. , Boeyen, S. , Housley, R. , Polk, W. , 2008. Inter-

net x.509 public key infrastructure certificate and certificate revocation list (crl)

profile . RFC 5280, RFC Editor.
Dierks, T. , Rescorla, E. , 2008. The Transport Layer Security (tls) Protocol version 1.2 .

RFC 5246, RFC Editor.
DigiCert , 2017. PKI: The security solution for the internet of things. Tech rep, Dig-

iCert Inc .
Emery D. my friend cayla doll records childrens speech, is vulnerable to

hackers. 2017. https://www.snopes.com/news/2017/02/24/my- friend- cayla- doll-

privacy-concerns/ .
Ford, W., Poeluev, Y., 2015. The machine-to-machine (m2m) public key certifi-

cate format. Internet-Draft draft-ford-m2mcertificate-00, IETF Secretariat. http:
//www.ietf.org/internet-drafts/draft- ford- m2mcertificate- 00.txt .

Forsby F. Digital certificates for the internet of things. Master’s thesis, KTH, Net-
work and Systems engineering 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:

kth:diva-217120 .

Ghedini, A., Vasiliev, V., 2018. Tls certificate compression. Internet-Draft draft-ietf-
tls-certificate-compression-04, IETF Secretariat. http://www.ietf.org/internet-

drafts/draft- ietf- tls- certificate- compression- 04.txt .
Gutmann, P., 2019. Simple certificate enrolment protocol. Internet-Draft draft-

gutmann-scep-14, Internet Engineering Task Force, work in Progress. https:
//datatracker.ietf.org/doc/html/draft- gutmann- scep- 14 .

He, Z. , Furuhed, M. , Raza, S. , 2019. Indraj: Certificate Enrollment for Battery-powered

Wireless Devices. In: Proceedings of the 12th ACM Conference on Security and
Privacy in Wireless and Mobile Networks. ACM .

Ieee. 1609.2–2016 - ieee standard for wireless access in vehicular environments.
2016. https://standards.ieee.org/standard/1609 _ 2-2016.html .

Instruments, T., 2015. CC2538 Powerful wireless microcontroller system-on-chip for
2.4-GHz IEEE 802.15.4. 6LoWPAN, and ZigBee Applications. http://www.ti.com/

product/CC2538# .

Jivsov, A., 2014. Compact representation of an elliptic curve point. Internet-Draft
draft-jivsov-ecc-compact-05, IETF Secretariat. http://www.ietf.org/internet-

drafts/draft-jivsov-ecc-compact-05.txt .
Managing. the internet of things (iot) device authentication life cycle. https://www.

deviceauthority.com/assets/INTEL _ Device- Authority _ Solution- Brief.pdf .
Park, C., 2017. A secure and efficient ecqv implicit certificate issuance protocol for

the internet of things applications. IEEE Sensors J. 17 (7), 2215–2223. doi: 10.
1109/JSEN.2016.2625821 .

Pritikin, M., Richardson, M., Behringer, M., Bjarnason, S., Watsen, K., 2019. Bootstrap-

ping remote secure key infrastructures (brski). Internet-Draft draft-ietf-anima-
bootstrapping-keyinfra-18, IETF Secretariat. http://www.ietf.org/internet-drafts/

draft- ietf- anima- bootstrapping- keyinfra- 18.txt .
Pritikin, M. , Yee, P. , Harkins, D. , 2013. Enrollment Over Secure Transport . RFC 7030,

RFC Editor.
Raza, S., Helgason, T., Papadimitratos, P., Voigt, T., 2017. Securesense: end-to-end se-

cure communication architecture for the cloud-connected internet of things. Fu-

ture Gener. Comput. Syst. 77, 40–51. doi: 10.1016/j.future.2017.06.008 .
Raza, S., Seitz, L., Sitenkov, D., Selander, G., 2016. S3k: Scalable security with sym-

metric keys - DTLS key establishment for the internet of things. IEEE Trans. Au-
tom. Sci. Eng. 13 (3), 1270–1280. doi: 10.1109/TASE.2015.2511301 .

Research, C. , 2016. Public key infrastructure for the internet of things. Tech rep, Cer-
tified Security Solutions, Inc .

Roetteler M., Naehrig M., Svore K., Lauter K.. Quantum resource estimates for com-

puting elliptic curve discrete logarithms. 2017.
Sarikaya, B., Sethi, M., Garcia-Carillo, D., 2018. Secure iot bootstrapping: a sur-

vey. Internet-Draft draft-sarikaya-t2trg-sbootstrapping-05, IETF Secretariat. http:
//www.ietf.org/internet-drafts/draft-sarikaya-t2trg-sbootstrapping-05.txt .

Schaad, J. , Myers, M. , 2008. Certificate Management Over cms (cmc) . RFC 5272, RFC
editor.

van der Stok, P., Kampanakis, P., Richardson, M., Raza, S., 2019. Est over secure

coap (est-coaps). Internet-Draft draft-ietf-ace-coap-est-10, IETF Secretariat. http:
//www.ietf.org/internet-drafts/draft- ietf- ace- coap- est- 10.txt .

Ting, P., Tsai, J., Wu, T., 2018. Signcryption method suitable for low-power iot devices
in a wireless sensor network. IEEE Syst. J. 12 (3), 2385–2394. doi: 10.1109/JSYST.

2017.2730580 .
Tschofenig, H. , Fossati, T. , 2016. Transport Layer Security (tls) / Datagram Transport

Layer Security (dtls) Profiles for the Internet of Things . RFC 7925, RFC Editor.

Zolertia S.L. Zolertia firefly platform. 2018. https://github.com/Zolertia/Resources/
wiki/Firefly .

Paper II

LICE: Lightweight certificate enrollment for IoT
using application layer security
1st Joel Höglund

RISE Research Institutes of Sweden
Stockholm, Sweden
joel.hoglund@ri.se

2nd Shahid Raza
RISE Research Institutes of Sweden

Stockholm, Sweden
shahid.raza@ri.se

Abstract—To bring Internet-grade security to billions of IoT
devices and make them first-class Internet citizens, IoT devices
must move away from pre-shared keys to digital certificates.
Public Key Infrastructure, PKI, the digital certificate management
solution on the Internet, is inevitable to bring certificate-based
security to IoT. Recent research efforts has shown the feasibility of
PKI for IoT using Internet security protocols. New and proposed
standards enable IoT devices to implement more lightweight
solutions for application layer security, offering real end-to-end
security also in the presence of proxies.

In this paper we present LICE, an application layer enrollment
protocol for IoT, an important missing piece before certificate-
based security can be used with new IoT standards such as
OSCORE and EDHOC. Using LICE, enrollment operations can
complete by consuming less than 800 bytes of data, less than a
third of the corresponding operations using state-of-art EST-coaps
over DTLS. To show the feasibility of our solution, we implement
and evaluate the protocol on real IoT hardware in a lossy low-
power radio network environment.

Index Terms—Public Key Infrastructure, PKI, IoT, digital
certificate, enrollment, CBOR, OSCORE, EDHOC, embedded
systems

I. INTRODUCTION

The Internet of Things continues to grow rapidly, mak-
ing fully automated IoT security one of the most important
challenges to prevent serious threats to the whole Internet
infrastructure. New IoT devices are becoming more capable
of performing cryptographic operations, but the perceived over-
head and lack of standards have been obstacles to move beyond
pre-shared key solutions and create public key infrastructure
(PKI) solutions that include IoT. Using OSCORE, IoT devices
can communicate securely in a standardized manner using
application layer security, which allows messages to traverse
proxies to offer true end-to-end security [1]. OSCORE together
with EDHOC [2] for key establishment have the potential to
offer lightweight solutions for establishing secure sessions.

a) Problem: Application layer security solutions that sup-
port digital certificates are being standardized but are not
practical to use unless PKI support for these standards is
available. The most important building block for a PKI is the
functionality to do enrollment. For the enrollment to scale to
billions of devices, it needs to be fully automated, requiring no
out-of-band operations, and lightweight to meet IoT constraints.
Existing solutions can perform certificate enrollment using
CoAP over DTLS [3], [4], but these solutions are not adapted

Enrollment

Secure
communication

Factory
setup

EDHOC,
OSCORE,
CBOR, EST

EDHOC,
OSCORE

Certificate
Authority (CA)

IoT end-users

Pre-deployment Enrollment

Regular operationsRetirement

Fig. 1. An IoT device life cycle: factory setup, initial enrollment, normal
operation/communication mode, back to re-enrollment or retirement. The focus
of this paper is the enrollment phase.

to be used with the new application layer security protocols.
Besides true end-to-end security, application layer security
can offer lightweight sessions where different applications use
different credentials. In theory, services in a constrained IoT
device could use certificates to setup multiple DTLS-sessions
with different endpoints. In practice, DTLS-sessions are costly
in terms of memory, and IoT devices can rarely afford more
than a single DTLS-session at once.

OSCORE does not exclude the usage of pre-shared keys,
which can offer the smallest footprint for the most constrained
devices. But for the growing number of more capable IoT
devices, real PKI solutions are needed for them to become first-
class Internet citizens.

b) Challenges: IoT devices are resource constrained com-
pared with computers on the Internet. If they are battery
powered, every byte needed to be sent over radio counts
towards the total energy budget. To be interoperable with
mainstream Internet devices and services, they need to use
standard based communication mechanisms. Existing protocols
designed for less constrained devices have lengthy encoding
formats, creating substantial overhead both in terms of memory
and communication.

c) Contributions: This paper provides a lightweight en-
rollment protocol for IoT, based on optimizing EST-coaps [3]
for usage with OSCORE and EDHOC. Through our proposed
enrollment protocol we provide an important building block
towards enabling PKI for IoT. Without LICE devices would

need to support DTLS and OSCORE in parallel, completely
removing the advantages of moving to a more lightweight set of
communication protocols. Utilizing application layer security
solutions, the enrollment protocol follows upcoming standards
and achieves real end-to-end security. Through efficient secure
session establishment, together with CBOR [5] encoding for
EST enrollment operations, we bring the enrollment data ex-
change down to 800 bytes of data. This is less than a third of
the data being transferred compared with existing EST-coaps
solutions.

The core contributions of the paper are as follows:
• We provide LICE, a lightweight and secure enrollment

protocol exploiting the novel OSCORE and EDHOC pro-
tocols that can traverse proxies without breaking end-to-
end security.

• We propose CBOR-encoding for the LICE EST operations
necessary for application layer enrollment.

• We provide an implementation for resource constrained
devices.

• We evaluate and compare LICE with previous state of art
solutions for IoT enrollment, EST-coaps over DTLS.

The rest of this paper is organized as follows: related work is
presented in section II. Section III gives a brief presentation of
relevant background. Section IV introduces the assumed threat
model. Section V presents the enrollment protocol design and
VI details the proposed CBOR encodings. The details of the
implementation and evaluation are provided in sections VII
and VIII respectively. Section IX discusses further security
considerations and section X concludes the paper.

II. RELATED WORK

Within the field of IoT security, benefits and challenges with
certificate based authentication and related PKI requirements
have been discussed for a long time [6]–[9]. The area has
gained considerable industry attention, but mainly address-
ing devices powerful enough to run standard Internet proto-
cols [10], [11]. An IoT security overview from 2018 highlights
the challenges with resource constraints related to PKI and the
immaturity of existing standards [12].

There are two application areas where the need for automated
and efficient certificate management have been highlighted: E-
health and the automotive industry. These are both areas where
privacy and safety concerns are paramount [13], as well as
strict standard compliance for both legal and safety reasons
[14], [15]. Results from the automotive scenarios are not easily
transferable to the general IoT domain, but they highlight the
requirements of standard based interoperability and resource
efficiency.

A conclusion is that there is significant interest in PKI solu-
tions for constrained devices, but that standardized lightweight
key management is mainly an unsolved issue.

Existing standards for certificate enrollment have been de-
signed for non-constrained devices. SCEP, CMC, CMP, and the
original EST protocol belong to this category [16]–[19]. EST
over secure CoAP (EST-coaps) provides relatively lightweight

enrollment operations using DTLS over UDP [3]. EST-coaps
has been evaluated in [20] and [4]. In [4] some steps are
taken to reduce the verbose ASN.1 encoding format, but the
more compact encoding is only used inside a low power radio
network, transparent to end servers on the wired Internet.
The solution proposed in this paper is a missing piece before
the new application layer security protocols can be scaled to
billions of IoT devices using certificate-based cryptography.

III. NECESSARY TECHNOLOGY BACKGROUND

This section provides a quick overview of the technologies
necessary to understand the paper.

A. EST

The original Enrollment over Secure Transport protocol spec-
ifies how to use Certificate Management over CMS messages
for enrollment, using HTTPS [19]. The required minimum
functionality of EST is to allow the secure transfer of: CA
certificates needed for the client trust anchor database (also
called trust store), certificate enrollment requests and the re-
sulting enrolled certificate. The proposed EST-coaps is defined
to use DTLS over UDP [3]. It replaces the base64 message
encoding used in original EST with binary message encodings.

B. CBOR

The Concise Binary Object Representation is a data format
designed with the explicit goals to be compact and possible
to encode and decode with low resource overhead [5]. Besides
basic data types, maps and arrays it supports binary byte strings,
making it possible to use as wrapper for any binary data.
Pure CBOR encoded data should be self-describing, possible
to decode without a schema.

C. OSCORE

Object Security for Constrained RESTful Environments is a
newly standardized application-layer protocol for protection of
CoAP messages [1]. It uses COSE [21] and CBOR functionality
for encryption and encoding. Besides end-to-end encryption it
provides integrity and replay protection. It is designed han-
dle CoAP-mappable HTTP, hence enabling CoAP devices to
communicate securely over proxies also with HTTP endpoints.
OSCORE does not define key establishment, which needs to
be provided by additional mechanisms.

D. EDHOC

Ephemeral Diffie-Hellman Over COSE is a proposed key
exchange protocol, designed to be useful for constrained scenar-
ios [2]. Like OSCORE it builds upon COSE cryptography and
uses CBOR encoding. Besides mutual authentication it provides
identity protection and perfect forward secrecy. Establishing the
key material needed for OSCORE is one possible use case,
but the protocol can be used on its own for other mutual
authentication scenarios. In its minimal form it only needs
three messages to perform mutual authentication and establish
shared key material. In addition, the handshake messages can
carry auxiliary data (presented as AD_1-3 from the proposed

standard draft), with some restrictions regarding the offered
protection. An extra fourth message can be added to carry
auxiliary data, removing the need to setup a full OSCORE
session if no further data exchange is needed.

IV. THREAT MODEL

We base our threat model for the IoT enrollment com-
munication scenarios on the Dolev-Yao threat model. By the
model it is assumed that any communication between the
involved entities can be eavesdropped by an attacker, which
is capable of modifying and re-sending any message. This
means the system must be able to withstand replay attacks and
still offer authentication and confidentiality services, preventing
unauthorized access to any secret content. On the other hand,
it is assumed that nothing about a plaintext message can be
learned from the ciphertext for an attacker without access to
the keying material (within the considered time frames).

Trustbase and limitations: We assume there is at least one
accessible Certificate Authority (CA), which can be reached by
the IoT device and that they can perform mutual authentication.

For the involved hash and crypto algorithms and their key
lengths, we assume that the NIST recommendations will be
valid for the relevant future. We also assume that the existing
and proposed standards used are not compromised.

This work does not address potential backdoors in the IoT
devices, and considers the software stack and hardware to
be trusted. Research on software security, trusted execution
environments (such as TrustZone) and secure storage are com-
plementary to this work.

V. LICE: APPLICATION LAYER ENROLLMENT PROTOCOL

This section details the LICE protocol and presents different
design options for different usage scenarios.

A. Involved entities

The following entities are relevant for the scenarios the
design needs to cater for:

Factory Certificate Authority (Factory CA). The entity that
issues the manufacturer-installed certificate for the IoT device.

Enrollment Certificate Authority (CA). The entity an IoT
device contacts to perform enrollment or re-enrollment. This
CA needs to be able to verify the certificates issued by the
factory CA.

The IoT device. In the scenarios we consider, the IoT device
is deployed with a pre-installed certificate from the factory CA,
the knowledge of which enrollment CA to contact, and an initial
trust store to verify the identity of the enrollment CA.

B. Protocol requirements

The most fundamental enrollment protocol operation consists
of a certificate signing request (CSR), and a reply with a newly
issued certificate. The certificate is a token of trust needed to
become part of a public key infrastructure. Before issuing a
certificate the recipient of the enrollment request, the trusted
CA, must be able to verify the binding between a privately kept

secret key (Private Key) and the public counterpart present in
the certificate signing request (Public Key).

To update or replace its factory installed trust store, the IoT
device needs additional certificates. Hence an operation for
secure transfer of certificates is required.

Another basic operation is the possibility to renew a cer-
tificate that is about to expire, an operation which is close to
identical with the initial enrollment operation.

To perform these operations the enrollment protocol requires
a secure channel, where the involved parties are mutually
authenticated before any sensitive data is exchanged. This in
turn requires a key exchange for secure session establishment.
Both the key exchange phase and any subsequent messages
must be transported such that replay-attacks can be detected
and prevented.

A full-fledged PKI will need to address issues of certificate
revocation, which is not addressed in this paper. It is however
worth noticing that certificates with sufficiently short validity
time can be seen as an alternative to active revocation, espe-
cially for resource-constrained IoT devices. Until a revocation
mechanism is in place, and instead short certificate lifetimes
are used to compensate, it becomes extra important to make
the enrollment operations lightweight.

C. Choice and motivation of protocol building blocks

We have chosen the EST enrollment protocol as a starting
point. It has proven to be adaptable for usage with DTLS
in resource constrained environments, such as the low-power
and lossy networks we primarily target, while providing the
required basic enrollment operations [4]. When the new en-
rollment protocol is designed using the latest crypto building
blocks, using application layer security and compact CBOR en-
coding schemes, it has the potential to become more lightweight
compared with older DTLS solutions using ASN.1 encoding.

OSCORE can be used for the secure channel, complemented
with EDHOC for the key establishment. Both OSCORE and
EDHOC contain mechanisms to counter replay-attacks through
sender sequence numbers and transcript hashes, respectively.

From the security of the underlying SIGMA schema it
follows that as long as the included components keep their
security guarantees, the resulting protocol will provide the de-
sired security services. The SIGMA-I variant used as the basis
for EDHOC has the additional benefit of identity protection.
The identity of the initiator is protected from active attacks,
while the responder has passive attack protection [22]. For
IoT scenarios, the constrained and possibly mobile devices are
generally more vulnerable than a server, hence assigning the
role of initiator to the IoT device is the default choice.

For devices prepared to run OSCORE, cryptographic func-
tionality usable for EDHOC and libraries for CBOR are already
available, lowering the added overhead.

Based on these requirements and building blocks we propose
a lightweight enrollment solution capable of end-to-end secu-
rity, including Internet proxy traversal. The following sections
presents two different design options.

Fig. 2. Version I: Enrollment over OSCORE, protected with EDHOC secured
session.

Fig. 3. Version II: Enrollment embedded in the EDHOC protocol, the version
LICE proposes to use. The auxiliary data fields are used to carry the enrollment
messages.

D. Enrollment over EDHOC-OSCORE

A basic approach using application layer security is a design
where EDHOC is executed without any modifications. Once the
secure session is established between an IoT device and a CA,
the enrollment operations are performed. This approach has the
benefit of being agnostic to the key establishment method, and
does not risk altering the security guarantees offered by the key
establishment method used. Only three messages are needed
for the devices to mutually authenticate, and calculate a shared
secret which can be used to create further key material needed
for OSCORE. This solution requires that both OSCORE and
EDHOC are implemented and present in the IoT device being
enrolled.

Running EDHOC to completion and continuing with OS-
CORE can be seen as the equivalence of performing a DTLS
handshake, and thereafter protecting EST messages with the
DTLS Record protocol.

The scenario is shown in Fig. 2. It consists of a total of four
round trips, since also message three will be acknowledged
with an empty reply.

E. Enrollment using EDHOC

A more optimized alternative compared to the above ap-
proach is to reuse the key establishment messages to carry
EST payload. The proposed EDHOC protocol has hooks for an

application to provide auxiliary data which can be used to carry
EST messages in a standard compliant manner. Combining
EDHOC with enrollment has the potential to further reduce
the number of messages, and the total bytes sent. Care must
be taken to ensure that the protocol security guarantees are
not jeopardized. Specifically, data sent as part of an EDHOC
exchange cannot be considered protected until both parties have
authenticated each other. (The shared secret is computed, and
used, before the mutual authentication is finished.) In addition
it creates a binding to the key establishment protocol by the
requirement to handle application data.

The compact alternative, pushed by LICE for IoT, proposes
to use the first EDHOC message as the cacerts request.
The AD_2 in message two is used to carry the cacerts
reply. AD_3 in the third message is used for the enrollment
request. If the request is accepted, AD_4 in the added fourth
message carries the CA reply with the newly enrolled certificate
information. The message exchange scenario is shown in Fig. 3.

One of the main advantages of using the proposed version
II solution is to avoid strong bindings between EDHOC and
OSCORE. While EDHOC can be used by OSCORE for key
establishment, it is a standalone protocol and can be used by
other security protocols. In those cases when EDHOC is used
for other purposes, having the enrollment protocol bound with
the combined usage of OSCORE and EDHOC will require a
full-fledged implementation of OSCORE only for the purpose
of enrollment.

1) Security considerations when sending auxiliary data:
The cacerts request does not carry any data of its own,
and is identified by the target URL alone. Hence the only
information leaked to an outside observer is the fact that the
client is initiating contact with an EDHOC endpoint. Using
AD_2 in message two to carry root certificates to update
the client trust store means they will be sent before the CA
has finished authenticating the client. The certificates in the
message are meant to be publicly available, and handling the
request is computationally lightweight, hence the risk for the
CA to handle the request is small. For the client it is vital to
finish authenticating the CA through the complete processing
of message two before adding the received certificates to its
trust store. Any data sent by the IoT device as AD_3 in message
three should only be processed by the server after it has finished
the authentication by verifying the included signature.

F. Choice of crypto keys

Early EDHOC proposals included the capabilities to be
used with either pre-shared keys or asymmetric keys such
as X.509 certificates. Pre-shared keys do not scale well and
causes security vulnerabilities. If a server containing the pre-
shared key of several IoT devices is hacked the entire IoT
deployment is compromised. Hence LICE is designed for using
EDHOC with certificates. The first secure session establishment
is carried out by factory installed certificates. As a result
of using certificate based authentication, the Sign_or_MAC-
fields in the diagrams (Fig. 2 and 3) will be used to carry
signatures.

Further design choices are whether to send full certificates
as part of the handshake or to only send references, carried in
the CRED field in Fig. 3. If the reference format is chosen, the
EDHOC proposed format is to include a CBOR encapsulated
hash of the full certificate. Sending only a reference can greatly
reduce the amount of data to transfer, but the procedure requires
the parties to already have the referenced certificates stored
locally. For many IoT scenarios where the devices are given
pre-installed factory certificates to use for authenticating a
CA for initial enrollment, this is a reasonable assumption.
LICE proposes the usage of certificate hashes, but allows full
certificates for deployments where the solution using hashes
only is unavailable.

For IoT devices, elliptic curve cryptography (ECC) based
solutions have become a de facto standard. ECC can offer
strong cryptographic guarantees already at shorter key lengths
compared with RSA and results in less overhead both in terms
of memory and computation. LICE uses ECC, primarily with
the NIST P-256 curve, which is well supported among existing
crypto implementations, and is seen as sufficiently secure for
the foreseeable future.

G. Layering design considerations

1) Enrollment layer and transfer using CoAP: For the
design Version I the same URI paths which are proposed
for EST-coaps are used, /crts for the cacerts operation
and /sen for the simpleenroll operation. In the same
manner the CoAP response codes are reused. To indicate a
successful operation, the content response code 2.05 is used
for cacerts and the created response code 2.01 is used for
simpleenroll. To indicate errors, the applicable 4.xx or 5.xx
codes are used.

For the compact design, Version II, the server offers an
alternative endpoint, /edhoc_est. Since the CoAP response
codes are (partially) used by the EDHOC protocol, any en-
rollment error code from the server is placed in the auxiliary
data field. Any single byte reply is interpreted as an error
code, whereas any longer field is interpreted as the payload
of a successful operation. By this design the core of the EST
application is oblivious to the protocol version used, and can
easily be used for either.

For all protocol variants CoAP confirmable messages are
used to increase reliability when transporting protocol data.
This is in line with the recommendations for EDHOC.

2) UDP, IPv6 and 6LoWPAN: For IoT deployments in
wireless sensor networks, the expected lower layers of the stack
will consist of UDP, IPv6 and 6LoWPAN. For the primarily
targeted low power 802.15.4 radio networks, the expected total
frame size is only 127 bytes. While 6LoWPAN can handle
larger network layer packets through fragmentation, this causes
larger overhead and potential security weaknesses compared
with if the fragmentation is done by the higher layers. LICE is
designed to support block-wise transfer, which enables the
CoAP layer to handle the fragmentation of large packets.

VI. LICE: CBOR ENCODINGS OF EST MESSAGES

One of the main objections to using PKI solutions for IoT is
that the overhead is prohibitive for constrained devices. Since
CBOR is gaining widespread usage as an encoding standard
it is an acceptable requirement that CA:s which target the
growing IoT market should be capable of handling CBOR
encoded messages and certificates. Based on this development,
LICE proposes to use CBOR encodings of EST messages,
extending size reductions previously shown for certificates to
also include enrollment message payloads.

A. Encoding for distribution of CA certificates

The cacerts request itself has no payload, and hence
no overhead to remove. In EST, the ASN.1 encoding of the
PKCS#7 formatted reply comes with a large header and footer.
If CBOR is used, a chain of certificates can be encoded as
a CBOR array, with a total of max three bytes overhead per
certificate. This array construction can be used even if the
certificates themselves are kept in ASN.1 format, although
CBOR encoding of the certificates reduces the size further [23].
CertificateChain = [

+CBORCertificate / ASN.1_Certificate
]

B. Encoding for enrollment requests

In EST the certificate signing request is formatted according
to the PKCS#10 format, which is a format with flexibility
and extensive options. For the IoT scenarios we consider, the
information a device needs to send to the CA server as part
of the enrollment operations is very limited. The device needs
to present its subject information, the public part of the key it
wishes to enroll, the key type and a request signature as proof of
possession of the secret key. For IoT devices we propose using
an EUI-64 based on the device MAC address as the subject
information. The decisions on which key usage rights to include
in the certificate, to be encoded as certificate extensions, are
made by the CA and thus this information does not need to
be part of the request. The resulting Concise Data Definition
Language (CDDL) template needed to specify an IoT CBOR
certificate request is:

CBORCertificateRequest = (
Request,
subjectSignatureValue,

)

Request = (
type : int,
subject : bytes,
subjectPublicKey : bytes,
subjectPublicKeyAlgorithm :

AlgorithmIdentifier
)
subjectSignatureValue : bytes

AlgorithmIdentifier = int /
[algorithm: ˜oid, ? parameters: bytes]

The type field is used with a 0 to indicate a request
for a natively signed CBOR certificate. A natively signed

CBOR certificate is meant to be used as such, to communicate
with other devices and services capable of handling CBOR
certificates. Alternatively, a 1 is used to indicate a request for
a CBOR encoded certificate that can be reconstructed into a
standard X509 certificate. This is needed for communicating
with devices not equipped to handle CBOR certificates.

For commonly used public key algorithms a single integer is
sufficient for identification. If needed the field can be expanded
to a CBOR array, to accommodate for more algorithms based
on OIDs, potentially including explicit algorithm parameters.

For the IoT scenarios we target, an ECC P-256 public key
is a typical choice. The consequences for the request fields are
the following:

The subjectPublicKey field carries the minimal public
key information. An ECC public key consists of a (X,Y) curve
point pair. When the curve is known, the Y point can be
calculated from the X coordinate together with the sign bit
of Y. Hence it is sufficient to include only this information in
the request field.

For a P-256 key, the signatureValue field carries the
two 32 bit values that make up the signature. When the curve
is known, no extra info or padding is needed.

C. Encoding for enrollment replies

To transfer the newly issued certificate back to the IoT
device, EST is using PKCS#7. Instead we propose to let the
payload of the EST server reply consists entirely of the enrolled
CBOR encoded certificate, with no extra headers or footers
besides a minimal CBOR byte string wrapping.

VII. IMPLEMENTATION

We develop a LICE implementation as modules in C, that
can easily be adapted for available operating systems for
embedded systems such as Contiki NG and Zephyr [24], [25].
The LICE implementation contains EHDOC, OSCORE, EST,
and CBOR encoding and decoding.

For a stand alone version which can be ported to any plat-
form, we have adapted the experimental OSCORE support in
libcoap. For the constrained hardware implementation we made
an OpenThread based version which we deploy on nRF52840-
DK, an Arm Cortex-M4 board with 802.15.4-radio. OpenThead
is an open-source implementation of Thread, with support for
DTLS and CoAP. As of spring 2021, the OpenThread CoAP
libraries lack support for OSCORE. To evaluate the overhead
of OSCORE we perform the corresponding key derivation
and encryption/decryption directly on the CoAP payload, with
added bytes to compensate for the CoAP headers.

Choice of crypto algorithms. Both EDHOC and OSCORE
need an AEAD algorithm and a HMAC-based key derivation
function (HKDF) to establish a secure session. In addition,
EDHOC needs to specify which Elliptic-curve Diffie–Hellman
(ECDH) curve to use for the ephemeral keys and shared
secret generation, plus an algorithm and curve to use for the
signatures.

For our implementation we have focused on support for
AES-CCM-16-64-128 and SHA-256 for AEAD and HKDF,

respectively. The curve25519 is chosen for ECDH. Finally
ECC P-256 is the main choice for the signature algorithm and
curve [26].

These crypto components are included in the cipher suites
proposed for standard EDHOC, targeting IoT scenarios. They
are selected for their strong cryptographic properties while
being relatively lightweight.

For the primitive crypto operations we have reused func-
tionality from MbedTLS [27], curve25519-donna and uECC,
as well as the crypto libraries available in the nRF SDK [28],
which enables the use of hardware acceleration for some of the
crypto operations.

VIII. EVALUATION

A. Method and overview

We use an experimental research methodology where we
evaluate the impact of one particular variable of a phenomenon
while keeping other parts of the system setup static. This
ensures the results can be properly attributed to a specific
system change. We present both micro benchmarks showing
the individual aspects, as well as basic system tests. We include
versions where ASN.1 is used in the comparisons, both to
demonstrate the benefits of CBOR and to show compatibility
with legacy deployments where no or minimal updates to the
CA server side are done.

B. Experimental setup

For the hardware experiments we setup a local EST test
server on a Raspberry Pi 3B+ which also acts as an OpenThead
gateway. For DTLS we use the ECDHE-ECDSA-AES128-CCM8
suite, with the P-256 curve. This is a commonly used configu-
ration for IoT (for instance a mbedTLS default), similar to the
setup for EDHOC. For fair comparisons any other cipher suit
configuration is disabled, which prevents lengthy suit identifiers
being advertised through DTLS handshake messages.

C. Micro benchmarks

1) Handshake message sizes: The individual EDHOC hand-
shake message sizes for a regular unmodified EDHOC exe-
cution are shown in table I. In a setup where both the IoT
client and the CA have access to each others public credentials,
only the certificate references need to be included, and the
messages sizes can be kept minimal. Compared with DTLS,
the corresponding handshake using DTLS 1.2 and the same
certificates, the total handshake message size is 1716 bytes
when using the X.509 certificate format or 1369 bytes when
using CBOR certificates.

2) Enrollment message sizes: Table II shows the EST pay-
load for the enrollment related operations. By using CBOR
encoding of the EST messages we achieve a reduction with
more than 50%.

3) Total enrollment cost: To see the full effect of the
enrollment operation for the relevant possible configurations,
we calculate the total enrollment cost in bytes. The numbers
for a full enrollment, including the cacerts operation, is
shown in table III. For the case where all the necessary CA

TABLE I
EDHOC MESSAGE SIZES, USING ORIGINAL X.509, CBOR CERTIFICATES

OR REFERENCE ONLY

Message
CoAP size (B)

X.509 CBOR Ref. only
Message 1 51 51 51
Message 2 422 274 123
Message 3 399 251 110
Total size 872 567 284

TABLE II
EST MESSAGE SIZES, USING ASN.1 AND CBOR ENCODINGS

Message
EST payload size (B)
ASN.1 CBOR

cacerts
request empty 0 0

response header/footer 49 3
CA cert. 375 208

enroll
request

requestInfo 141 47
signature alg. 10 1

signature 74 64

response header/footer 49 0
Client cert. 316 138
Total size 1014 458

certificates are already present in the device trust store, only
the simple enrollment operation is needed. The numbers for
those enrollment scenarios are included as the ’b’-alternatives
in Fig. 4.

It is clear from the data that there are substantial savings to be
made to switch from ASN.1 encoding to CBOR. For the cases
where the handshake is done with reference only, but the IoT
device needs to update its trust store with one further certificate,
the total operation cost is less than 800 bytes (Version II). When
only enrollment is needed, the entire enrollment operation can

0

500

1000

1500

2000

2500

3000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

EST, CBOR

KE, ref

KE, CBOR

EST, ASN.1

KE, ASN.1

DTLS Version I Version II DTLS b Version Ib Version IIb

bytes

Fig. 4. Combined cost in bytes of handshake and enrollment messages,
including and excluding (b) the cacerts operation

be done with less than 600 bytes of application data.
4) Memory requirements: The basic crypto functionality

shared by OSCORE and EDHOC takes approximately 6 KB
of ROM. EDHOC, without optimisations, adds 5 KB more of
code.

The dynamic memory requirements will depend on the
enrollment scenario. For embedded environments where malloc
is not available or deemed unsuitable it is necessary to pre-
allocate static data buffers large enough to handle incoming
EDHOC and EST messages. In version I, where no additional
data is sent in EDHOC, less than 2 KB of RAM is needed
when using CBOR and only sending certificate references. If
using ASN.1 and including the certificates in the messages, the
RAM usage is at least 5 KB or more depending on certificate
sizes. This is expected for this legacy case, and is comparable
to the OpenThread RAM usage when using DTLS.

The EST component requires less than 10 KB of ROM. The
RAM usage depends on how long certificate chains the com-
ponent needs to be capable of handling. For the most confined
case, where total of three certificates are involved, 2 KB is
sufficient. As a comparison, for the nRF52840 test hardware a
default OpenThead instance running only the OpenThead test
program uses at least 263 KB of ROM and 69 KB of RAM.
This means that the EST memory footprint is less than 4% of
the ROM and less than 3% of the RAM usage for a typical
OpenThread application.

5) Computational effort, handshake: To calculate the over-
head of an EDHOC key establishment we measure the different
crypto operations involved. The table IV shows the cost in time
for performing the operations on our target hardware, with the
range of the data sizes that occur during the handshake for the
protocol versions. On the client side, the main computationally
intensive operations during the key establishment are all related
to public key operations: the generation of keys, shared secrets
and signatures, plus signature verification. Hashing and AES-
CCM crypto operations are lightweight in comparison. The
key derivation (HKDF) is cheap when it is used for the most
common nonce and key output sizes, 13 and 16 bytes. Such
nonce and key generation is performed a total of seven times
during the handshake. In addition, in the processing of the
second message, one key long enough to cover the entire length
of the message is generated. The maximum time, 9.4 ms (*),
corresponds to the completely non optimized case when a full
ASN.1 encoded certificate is sent, together with EST payload.
For the version II using CBOR and certificate references, 3.4
ms is needed.

It should be noted that the significantly higher cost for
shared secret generation (**) is a result of the X25519-curve
operations not being fully supported in terms of hardware accel-
eration on the hardware used, as opposed to the corresponding
operation done with P-256 keys. X25519 type key pairs are on
the other hand cheaper to generate.

In a DTLS 1.2 handshake with the selected cipher suit the
corresponding high cost operations are performed. The main
differences lies in DTLS using fewer key derivation operations,

TABLE III
TOTAL COST OF ENROLLMENT IN BYTES. THE KEY ESTABLISHMENT MESSAGES IN VERSION II CARRY PARTS OF THE EST DATA

DTLS EDHOC / OSCORE
CoAP payload, bytes X.509 CBOR Version I Version II

X.509 CBOR ref. X.509 CBOR ref.

Key establishment* 1716 1369 872 576 284 1476 899 607
Enrollment only 1169 610 1104 548 548 382 157 157
Total sum 2885 1979 1976 1124 832 1858 1056 764

TABLE IV
COMPUTATIONAL COST OF CRYPTOGRAPHIC OPERATIONS AND MESSAGE

PROCESSING FOR THE INITIATOR DURING HANDSHAKE

Operation Input size, byte Time
SHA-256 212–878 99–112 μs
AES-CCM encrypt 201–655 160–261 μs
AES-CCM decrypt 290–420 230–280 μs

Output size, byte
hkdf nonce and key generation 13–16 361–363 μs
hkdf content protection 81–874 1.3–9.4 ms*

Curve

public key pair generation P-256 19 ms
X25519 14.6 ms

shared secret computation P-256 18.2 ms
X25519 121 ms**

signature generation P-256 20.3 ms
signature verification P-256 21 ms
compressed key reconstruction P-256 6.5 ms

sum of all CBOR parsing 1.4 ms

total EDHOC

Version I, CBOR P-256 92 ms
X25519 191 ms

Version II, CBOR P-256 94 ms
X25519 193 ms

Version I, ref. P-256 86 ms
X25519 184 ms

Version II, ref. P-256 88 ms
X25519 186 ms

but more messages and less compact encoding of flags and
options.

6) Computational effort, EST: The result of the cacerts
operation is a certificate chain, which will be subjected to
certificate path validation. Path validation includes verifying
the certificate signatures, making this the computationally most
costly operation in the processing of the reply.

For the enrollment, the device generates a new key-pair and
one signature to sign the request. Upon receiving the reply, one
signature from the CA is checked. For our choice of EDHOC
crypto algoritms, these are the same type of key and signature
operations with the same cost as during the handshake.

Additionally, if CBOR certificate encoding is used, there
is an extra encoding/decoding cost. Encoding carries a min-
imal overhead, but decoding might include recalculating the
compressed public key. This is needed for path validation,
with a calculation time of 6.5 ms per certificate. For the
enrollment operation, the client does not need to recalculate
the compressed public key, as it is the same as it has generated
and stored locally. If the CA for any reason is trying to trick the

device with a faulty (non CBOR native) certificate, signature
verification will fail and the certificate will not be accepted.

The EST related costs are not dependent on the choice of
secure session used to carry the messages.

EST-coaps over DTLS

Version I, CBOR / ref.

Version II, CBOR / ref.

block size 64 byte block size 128 byte

se
co

nd
s

Fig. 5. Box plots showing median time and quartile data for the combined
handshake and enrollment operations

D. System tests

To evaluate the actual performance of the protocol we test
the most relevant versions against unmodified EST-coaps over
DTLS. To minimize the 6loWPAN fragmenting we use CoAP
block transfer. The deployment environment is noisy, reached
by several wifi networks, and occasional bluetooth traffic.

The results of the test runs with at least 1500 iterations per
test item are shown in Fig. 5. No outliers have been removed
from the data, hence the average times are considerably larger
than the expected median operation times. It is clear that
DTLS struggles with significant message losses and is prone
to recurring long delays, due to the error prone fragmentation
of handshake messages, which is avoided by our protocol.
The cropped upper quartiles extend to nine seconds. For a
particular deployment setting, if occasional long delays should
be avoided, one could evaluate an initial deployment to tweak
time-outs and increase the resend rate, but besides the extra
efforts an increased resend rate also comes with an increased

energy cost. Also the EDHOC based enrollment runs suffer
from long delays, but as can be seen the differences are sig-
nificant. By avoiding the lengthy handshake packets and using
more compact encodings, the entire enroll operation can be
performed with a median time between 0.62 and 0.81 seconds,
when using a 128 byte block size. This is between 45% and
58% of the median time needed for the DTLS alternative.
Despite frequent message losses, a bigger 128 byte block
size shows a bit better overall performance, since decreased
fragmenting overhead out-weights the losses.

Looking closer at the EDHOC versions, no significant time
differences can be seen when comparing version I and II, which
is to be expected because the relatively small differences in
size. For an environment where OSCORE needs to be available
either protocol version can be used, whereas version II can be
used independently.

E. Comparison with previous state-of-art

The previous state-of-art for IoT enrollment is represented by
the work done in [20] and [4]. The EST-coaps version presented
in [20] corresponds to the DTLS X.509 test cases evaluated here
in terms of overhead for handshake and enrollment payloads. In
[4] steps are taken to introduce CBOR encoding of certificates.
In that work the encoding is only used during the handshake
inside the low power radio network, relying on a custom
radio gateway for on-the-fly conversion between the encoding
formats, making it hard to directly compare, but from the point
of view of the IoT device this corresponds to a payload cost
between the original X.509 and the CBOR versions of DTLS
given in table III.

F. Evaluation Summary

The micro benchmarks and systems tests show that it is
feasible to execute certificate enrollment protected with ap-
plication layer security on IoT devices in a lossy low-power
radio network with acceptable overhead. LICE offers improved
performance compared with certificate enrollment protected
with DTLS.

IX. SECURITY CONSIDERATIONS

Both proposed versions of the protocol are built on a minimal
EDHOC message exchange, where the server starts executing
the protocol before checking the client reachability status. Since
network addresses can be spoofed, in some scenarios this can
be considered a potential denial-of-service attack threat. To
prevent this an additional echo-request can be sent from the
server, forcing the client to demonstrate reachability before
further server processing happens.

To limit the reliance on a potentially outdated factory in-
stalled trust store, especially in the absence of suitable revoca-
tion mechanisms, it is recommended to only use the initial trust
store once, for the first authentication with the enrollment CA,
until it has been updated by a successful cacerts operation.
In a larger PKI perspective questions related to transfer of trust
and mechanisms that enable reselling and re-deployment of
devices should be addressed.

While this work does not address IoT software security
specifically, it should be noted that the reduced complexity of
CBOR parsers and encoders can make them easier to keep
secure compared with more complex software for handling
ASN.1.

While IoT devices are becoming increasingly capable, asym-
metric cryptographic operations are still expensive. Whenever
energy is of concern, they should be used sparingly. Once
a secure context is established, a constrained device and the
connected endpoint can keep the context active as long as
deemed safe and useful, needing only symmetric crypto opera-
tions for onward communications. Questions of determining
suitable context life-times are related to general questions
of trust, certificate validity periods and certificate revocation
mechanisms. With potentially long lived security contexts,
it becomes important to ensure that the context lifetime is
never longer than the validity period of the credential upon
which the context was created. In addition, a trust revocation
mechanism for IoT should ideally ensure the termination of
relevant security contexts.

It is worth emphasising a key point of the SIGMA schema
used; as long as the included components keep their guarantees,
a correctly implemented protocol will provide the desired secu-
rity services. If any weakness is found in the fundamentals of a
cipher suit or in a particular implementation, the corresponding
component must be immediately replaced or updated. This
highlights the need for secure updates, another security service
which benefits from standardized PKI for IoT solutions.

X. CONCLUSION

We have provided one of the most important building blocks
needed to bring PKI to IoT, a fully automated certificate
enrollment protocol. LICE is built on the new ecosystem of
emerging and proposed application layer security standards,
creating a solution which can traverse proxies and offer true
end-to-end security. Using compact CBOR-based encodings
and standard cryptographic components, we have demonstrated
certificate enrollment with a significantly lower cost, using less
than one third of the data for communication compared with
corresponding operations using the previous state-of-art EST-
coaps.

ACKNOWLEDGMENT

This research has partly been funded by The Swedish Foun-
dation for Strategic Research (SSF), by the H2020 ECSEL
SECREDAS project (grant ID: 783119) and by the Sweden’s
Innovation Agency Vinnova through the ITEA 3 STACK
project.

REFERENCES

[1] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object security
for constrained restful environments (oscore),” Internet Requests for
Comments, RFC Editor, RFC 8613, July 2019.

[2] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral diffie-hellman
over cose (edhoc),” Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-lake-edhoc-03, December 2020.

[3] P. van der Stok, P. Kampanakis, M. Richardson, and S. Raza, “Est over
secure coap (est-coaps),” Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-ace-coap-est-18, January 2020.

[4] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza, “PKI4IoT: Towards
Public Key infrastructure for the Internet of Things,” Computers &
Security, p. 101658, 2019.

[5] C. Bormann and P. Hoffman, “Concise binary object representation
(cbor),” Internet Requests for Comments, RFC Editor, RFC 7049, October
2013.

[6] M. Schukat and P. Cortijo, “Public key infrastructures and digital certifi-
cates for the internet of things,” in 2015 26th Irish Signals and Systems
Conference (ISSC), 2015, pp. 1–5.

[7] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, pp. 2481–2501, Nov 2014.

[8] R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. G. de Azevedo, and
F. Hessel, “Evaluating the use of tls and dtls protocols in iot middleware
systems applied to e-health,” in 2017 14th IEEE Annual Consumer
Communications Networking Conference (CCNC), 2017, pp. 480–485.

[9] F. A. Alhaidari and E. J. Alqahtani, “Securing communication between
fog computing and iot using constrained application protocol (coap): A
survey,” J. Commun., vol. 15, pp. 14–30, 2020.

[10] DigiCert, “PKI: The Security Solution for the Internet
of Things,” DigiCert Inc., Tech. Rep., 2017. [Online].
Available: https://www.digicert.com/resources/fact-sheet/pki-the-security-
solution-for-the-internet-of-things.pdf

[11] Keyfactor, “PKI: The Solution for Building Secure IoT Devices,” Key-
factor, Inc, Tech. Rep., 2020.

[12] M. A. Khan and K. Salah, “Iot security: Review, blockchain solutions,
and open challenges,” Future Generation Computer Systems, vol. 82, pp.
395–411, 2018.

[13] C. Doukas, I. Maglogiannis, V. Koufi, F. Malamateniou, and G. Vas-
silacopoulos, “Enabling data protection through pki encryption in iot
m-health devices,” in 2012 IEEE 12th International Conference on
Bioinformatics Bioengineering (BIBE), Nov 2012, pp. 25–29.

[14] T. Giannetsos and I. Krontiris, “Securing v2x communications for the
future: Can pki systems offer the answer?” in Proceedings of the 14th
International Conference on Availability, Reliability and Security, ser.
ARES ’19. New York, NY, USA: Association for Computing Machinery,
2019.

[15] M. N. Aman, U. Javaid, and B. Sikdar, “A privacy-preserving and scalable
authentication protocol for the internet of vehicles,” IEEE Internet of
Things Journal, vol. 8, no. 2, pp. 1123–1139, 2021.

[16] P. Gutmann, “Simple certificate enrolment protocol,” Internet Requests
for Comments, RFC Editor, RFC 8894, September 2020.

[17] J. Schaad and M. Myers, “Certificate management over cms (cmc),”
Internet Requests for Comments, RFC Editor, RFC 5272, June 2008.

[18] C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet x.509
public key infrastructure certificate management protocol (cmp),” Internet
Requests for Comments, RFC Editor, RFC 4210, September 2005.

[19] M. Pritikin, P. Yee, and D. Harkins, “Enrollment over secure transport,”
Internet Requests for Comments, RFC Editor, RFC 7030, October 2013.

[20] Z. He, M. Furuhed, and S. Raza, “Indraj: Digital certificate enrollment for
battery-powered wireless devices,” in Proceedings of the 12th Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
117–127.

[21] J. Schaad, “Cbor object signing and encryption (cose),” Internet Requests
for Comments, RFC Editor, RFC 8152, July 2017.

[22] H. Krawczyk, “Sigma: The ‘sign-and-mac’ approach to authenticated
diffie-hellman and its use in the ike protocols,” in Advances in Cryptology
- CRYPTO 2003, D. Boneh, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 400–425.

[23] S. Raza, J. Hoglund, G. Selander, J. Mattsson, and M. Furuhed,
“Cbor encoding of x.509 certificates (cbor certificates),” Working Draft,
IETF Secretariat, Internet-Draft draft-mattsson-cose-cbor-cert-compress-
06, January 2021. [Online]. Available: https://tools.ietf.org/html/draft-
mattsson-cose-cbor-cert-compress-06

[24] T. Vu Chien, H. Nguyen Chan, and T. Nguyen Huu, “A comparative study
on operating system for wireless sensor networks,” in 2011 International
Conference on Advanced Computer Science and Information Systems,
2011, pp. 73–78.

[25] Linux Foundation Project, “Zephyr project,”
https://www.zephyrproject.org/, 2020.

[26] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,”
Internet Requests for Comments, RFC Editor, RFC 7748, January 2016.

[27] ARMmbed, “Mbed tls,” 2021. [Online]. Available:
https://github.com/ARMmbed/mbedtls

[28] Nordic Semiconductor, “nrf5-sdk,” 2021. [Online]. Avail-
able: https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-
SDK-for-Thread-and-Zigbee

Paper III

Journal of Information Security and Applications 73 (2023) 103424

Available online 23 January 2023
2214-2126/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Lightweight certificate revocation for low-power IoT with end-to-end
security
Joel Höglund a,∗, Martin Furuhed b, Shahid Raza a

a RISE Research Institutes of Sweden, Isafjordsgatan 22, Kista, Stockholm, 16440, Sweden
b Nexus Group, Telefonv. 26, Stockholm, 12626, Sweden

A R T I C L E I N F O

Keywords:
IoT security
Revocation
OCSP
PKI
X.509

A B S T R A C T

Public key infrastructure (PKI) provides the basis of authentication and access control in most networked
systems. In the Internet of Things (IoT), however, security has predominantly been based on pre-shared keys
(PSK), which cannot be revoked and do not provide strong authentication. The prevalence of PSK in the IoT is
due primarily to a lack of lightweight protocols for accessing PKI services. Principal among these services are
digital certificate enrollment and revocation, the former of which is addressed in recent research and is being
pushed for standardization in IETF. However, no protocol yet exists for retrieving certificate status information
on constrained devices, and revocation is not possible unless such a service is available.

In this work, we start with implementing the Online Certificate Status Protocol (OCSP), the de facto
standard for certificate validation on the Web, on state-of-the-art constrained hardware. In doing so, we
demonstrate that the resource overhead of this protocol is unacceptable for highly constrained environments.
We design, implement and evaluate a lightweight alternative to OCSP, TinyOCSP, which leverages recently
standardized IoT protocols, such as CoAP and CBOR. In our experiments, validating eight certificates with
TinyOCSP required 41% less energy than validating just one with OCSP on an ARM Cortex-M3 SoC. Moreover,
validation transactions encoded with TinyOCSP are at least 73% smaller than the OCSP equivalent.

We design a protocol for compressed certificate revocation lists (CCRL) using Bloom filters which together
with TinyOCSP can further reduce validation overhead. We derive a set of equations for computing the optimal
filter parameters, and confirm these results through empirical evaluation.

1. Introduction

The Internet of Things (IoT) is projected to grow to billions of
devices in the coming years, and with this growth comes great security
challenges. In small deployments of constrained devices with controlled
access, such as wireless sensor networks, pre-shared key (PSK) solutions
are the current state-of-the-art for security. However, PSK cannot be
scaled to billions of globally identifiable devices, because the keys must
be distributed out-of-band. Moreover, the keys are symmetric, so a
server compromise puts all connected devices at risk, some of which
may be used in safety-critical applications.

Public key infrastructure (PKI) provides centralized key manage-
ment and mutual authentication for a wide range of networked systems.
As constrained devices become connected to the Internet-at-large, the
transition from PSK to PKI security is inevitable, and there has been
an ongoing effort to facilitate this transition [1]. This entails de-
signing new lightweight protocols to enable certificate enrollment,
re-enrollment and validation on constrained devices. These procedures

∗ Corresponding author.
E-mail addresses: joel.hoglund@ri.se (J. Höglund), martin.furuhed@nexusgroup.com (M. Furuhed), shahid.raze@ri.se (S. Raza).

are illustrated in Fig. 1. A constrained device can act as either an end
entity and/or a relying party, depending on the context.

The greatest barrier to implementing these procedures in the IoT is
the minimal computing resources available to many of the devices. For
cheap sensors and actuators still widely used in industrial deployments,
RAM is often on the order of tens of kilobytes, and communication
is often over lossy wireless channels. In the worst case, devices are
battery-powered and infrequently recharged. Under these conditions,
all network protocols must be remarkably efficient.

Devices with sufficient computing resources have two options for
retrieving certificate status information: download an X.509 certificate
revocation list (CRL), or request the status of individual certificates
with the Online Certificate Status Protocol (OCSP), see [2]. A CRL
containing hundred or thousands of entries can be on the scale of
tens or hundreds of kilobytes [3], which is far too large for some
constrained devices. OCSP exchanges are on the order of hundreds of
bytes, but this does not mean it is suitable for the Internet of Things.

https://doi.org/10.1016/j.jisa.2023.103424

Journal of Information Security and Applications 73 (2023) 103424

2

J. Höglund et al.

Fig. 1. The principle actors and procedures in a public key infrastructure: A registration authority (RA) verifies the identity of an end entity (EE) before a certificate authority
(CA) signs and issues its certificate. Relying parties (RPs) can verify the status of this certificate using either OCSP or a CRL download from a validation authority (VA)1 server.

Since the standardization of OCSP in 1999, many new technologies for
constrained applications have been introduced.

The development of lightweight versions of Web protocols for the
IoT began around 2007 with the introduction of 6LoWPAN [4,5]. This
enabled IPv6 networking on highly constrained devices. Two IPv6
network stacks for highly constrained environments are illustrated
in Fig. 2. Both of these utilize the Constrained Application Protocol
(CoAP), which is essentially a profile of HTTP. CoAP messages are
usually encoded with the Concise Binary Object Representation (CBOR)
encoding scheme [6,7], which is essentially a compact version of
JSON. Our solution for certificate validation on constrained devices,
TinyOCSP, is designed for use in CoAP network stacks.

The three primary contributions of this work are presented in the
following sections:

3 We critically analyze the specification of the OCSP protocol and
explain how significant performance improvements can be made
without sacrificing functionality or compromising security.

4 We design a new protocol called TinyOCSP, which leverages
recent IoT standards, as well as our findings in Section 3. We
implement this on state-of-the-art IoT hardware with low-power
radios alongside the original OCSP protocol, and evaluate the per-
formance benefits in terms of energy use and message overhead.

5 We integrate CRL compression using Bloom filters with TinyOCSP
to further reduce validation overhead. Furthermore, we derive
equations to compute the optimal Bloom filter parameters, and
verify these results through simulation.

The rest of this paper is organized as follows:

2 Related work and existing approaches to overhead reduction in
digital certificate revocation

6 Security considerations relevant to certificate validation on con-
strained node networks

7 Concluding remarks

1 ‘‘Validation authority’’ is a generic term for a server hosting a range of
PKI services. In the context of OCSP, the VA is often referred to as an OCSP
responder, as per RFC 6960. We use the term ‘‘VA’’ in this paper to refer to
both OCSP responders and CRL distribution points for simplicity.

2. Related work

Digital certificate revocation is a fairly simple operation from a
network administrator’s point of view. However, a certificate is not
practically disabled until all relying parties are notified of this change in
authorization. The efficient distribution of revocation state is a difficult
problem and has been the focus of many related studies.

OCSP remains uncontested in the realm of online validation systems
(i.e., systems which generate new validity proofs for every request
received). Other revocation systems can be categorized according their
underlying data structures: Bloom filters, Merkle trees, hash chains, lists
and various distributed architectures.

2.1. Bloom filters

The use of Bloom filters for CRL compression has been proposed for
VANETs by Raya et al. [12], advanced metering infrastructures in [13]
and Web browsers in [14]. This particular data structure is of interest
due to its very high compression ratio in applications where one must
determine if an item (e.g., a certificate) is a member of a set (e.g., a
CRL), and the expected outcome is non-membership. However, these
systems have only been demonstrated in research settings and are not
associated with any standardized protocols. A thorough treatment of
Bloom filters is given in Section 5.

Our contribution to this research area is a generally applicable set
of equations, which can be used to determine if Bloom filters have
utility in any given application area. Existing studies have conducted
experiments for specific use cases, which may not provide accurate
predictions of performance in other use cases.

Additionally, we demonstrate that CRL compression with Bloom
filters is feasible on devices with tens of kilobytes of RAM. This is
an important distinction, because existing works in this area target
more powerful IoT devices. For example, one recent paper presented an
implementation of Bloom filters for CRL compression on the Raspberry
Pi 2, which the authors referred to as an ‘‘IoT device’’ in [15]. However,
that platform has one gigabyte of RAM, and would therefore not be
classified as constrained according to IETF terminology, see [16].

Journal of Information Security and Applications 73 (2023) 103424

3

J. Höglund et al.

Fig. 2. Two networks stacks available for constrained devices, and their Web counterparts. The Object Security for Constrained RESTful Environments (OSCORE) [8] stack only
encrypts CoAP payloads, whereas the CoAPs stack uses DTLS to encrypt entire CoAP messages. EST-OSCORE, EST-coaps and EST are all certificate enrollment protocols with
end-to-end security (i.e., no trusted intermediary is relied upon). See [9–11].

2.2. Merkle trees

Certificate Revocation Trees (CRT), first proposed in 1998 in [17],
store revoked certificates in a Merkle tree. This allows relying parties
to query the status of an individual certificate, much like OCSP. The
validity or revocation proof consists of a list of ⌈log2(𝑛)⌉ hashes, where
𝑛 is the number of revoked certificates. (This is a property of Merkle
trees, which will not be thoroughly examined in this paper.) One of the
hashes included in every proof is the root node of the tree, which has
been signed by the VA. CRTs would be generated periodically, and since
the VA uses the same signed data structure to service every request, the
system can potentially reduce the computational load on VA servers.
Marginal improvements to the system have been proposed through the
use of skip lists by Goodrich et al. [18] and 2–3 trees by Naor and
Nissim [19].

This approach does not address the challenges faced by highly
constrained networks. The energy cost to relying parties must be min-
imized, while the cost to servers is of secondary concern. Consider
the case where 1000 certificates have been revoked, and a CRT is
constructed with SHA-256 hashes. A validity proof must then contain
32 × ⌈log2(1000)⌉ = 320 bytes, plus a signature and metadata. It will be
shown in Section 4.3 that this is larger than an OCSP response.

2.3. Hash chains

The use of hash chains for certificate validation was first proposed
by Micali [20], and later given the name NOVOMODO by Micali
[21]. The approach works, in principle, by appending two hashes to
a certificate upon its issuance. The CA generates two secrets, 𝑆1 and
𝑆2. 𝑆1 is hashed once, and will be revealed by the CA if the certificate
is revoked. The certificate has a lifetime 𝑇 and the CA will update
its status every interval of time 𝑡. The second secret 𝑆2 is hashed 𝑇 ∕𝑡
times, forming the hash chain 𝐻𝑇 ∕𝑡(𝑆2). At each update interval, the CA
reveals the next hash in the chain, thus informing relying parties that
the certificate is still valid. For example, if a certificate is issued for 365
days, the CA will reveal 𝐻300(𝑆2) after 65 days. The relying party can
then hash this value 65 times and compare it with the value 𝐻365(𝑆2),
which is embedded in the certificate.

The advantage of NOVOMODO is that VA responses (i.e., the
hashes) do not need signing. However, researchers have observed
that the hash chains of millions of certificates can amount to several

terabytes [22], and these must either be stored by the CA, transferred
to VA servers, or generated dynamically as requests are received. The
number of certificates issued to the IoT will be an order of magni-
tude higher than the Web, so NOVOMODO is not a feasible solution.
Moreover, relying parties cannot request fresh information, because the
update intervals are hard-coded into the certificates.

2.4. Revocation lists

Aside from X.509 CRLs and delta-CRLs, Google Chrome’s CRLSet
is the only list-based revocation in widespread use today. This is
essentially a curated list of revoked certificates from many TLS website
CRLs. One study found that CRLSet detects less than 2% of the revoked
certificates on the Web, see [23]. This system is built on the assumption
that most revoked certificates belong to websites that are rarely, if
ever, visited by end users. It is not clear how such a system could be
transposed to the Internet of Things, as the algorithm for generating
the CRLSets is not publicly available.

2.5. Distributed revocation state

Some authors have proposed distributed systems for sharing certifi-
cate status information across networks of devices, see [24,25]. These
approaches break end-to-end security between the VA and RPs, and are
therefore generally not applicable.

3. OCSP optimizations

The Online Certificate Status Protocol (OCSP) defines two ASN.1-
encoded messages: a request sent by a relying party, which indicates
one or more certificates to be validated, and a response returned by the
validation authority, which contains digitally signed certificate status
information. This standard is now 20 years old, and it is likely that con-
strained M2M applications were not seriously considered in its drafting.
We follow the approach applied by other successful adaptations of Web
standards for constrained environments, such as CoAP and 6LoWPAN.
This begins with identifying outdated, unnecessary or inefficient features
in an existing standard. Here, we present our analysis of OCSP under
these criteria.

Journal of Information Security and Applications 73 (2023) 103424

4

J. Höglund et al.

Fig. 3. The encoded data structure of an OCSP request. Gray boxes indicate an ASN.1
SEQUENCE of SEQUENCE, which can contain any number of duplicates of its nested
contents. Dashed boxes are optional to include.

3.1. Request encoding

We observed significant room for improvement in the encoding
of certificate identifiers in OCSP request messages. Each certificate is
identified in the reqCert field (see Fig. 3). This contains a hash of
the issuing CA’s name, a hash of the issuing CA’s public key, and a
serial number. The hashAlgorithm field is mandatory. Surprisingly,
SHA-1 is still widely used in OCSP implementations, even though
collision attacks have been demonstrated against the algorithm [26].
SHA-1 is the default hash function for OCSP certificate identifiers in
the latest version of OpenSSL [27]. We also found that the latest
version of Mozilla Firefox uses SHA-1 in OCSP requests, despite having
dropped support for TLS certificates containing SHA-1 signatures in
2017, see [28].

The total ASN.1 encoded size of the CA identifier is 53 bytes with
SHA-1, although it can be larger with other hash functions, such as
SHA-256. And yet, there is an X.509 certificate extension for this same
purpose called an authority key identifier (AKID). RFC 5280 §4.2.1.1
recommends an AKID of only 8 bytes in length to uniquely identify the
CA associated with a certificate. If this field were used as the certificate
authority identifier in OCSP requests, relying parties could simply copy
the AKID from a certificate, which would improve performance and
simplicity. A note on security properties: If the AKID is compromised
in the sense that a collision is possible, it could be used as a extremely
cumbersome denial of service attack vector, by invalidating a valid
certificate with the same AKID as a revoked one. The change will never
lead to a compromised and revoked certificate being accepted as a valid
one.

The nested encoding structure of OCSP allows messages to be
extensible, but adds significant encoding overhead. Simply switching
from ASN.1 to Concise Binary Object Representation (CBOR) encoding
would improve OCSP. CBOR array tags only indicate the number of
data items that follow, so they can often be encoded with just one byte.
Switching the encoding format does not affect the security properties.

3.2. Response encoding

We discovered that OCSP responses contain several fields which are
simply disregarded by relying parties, and can therefore be removed
without any negative security consequence. The identity of the VA is
specified in the required responderID field, even though relying
parties must already know the VA’s identity through its certificate.
Otherwise, it would not be possible to verify the signature on responses.
The responderID field can contain either the subject name string
from the VA’s certificate, or the VA’s subject key identifier (SKID). It is
peculiar that a choice is given for this field, because the SKID is much
more concise than the name string.

OCSP appears to contain redundant timestamps, some of which
do not provide meaningful information. The response contains two
required timestamps, producedAt and thisUpdate. The latter in-
dicates when the VA last updated its store of revocation information.
In modern PKI, there is very little latency between the revocation of a
certificate and the propagation of this information to all VA servers in
the PKI. In any case, the relying party simply needs to know whether
or not the response is fresh enough to be accepted based on its own
security policy. producedAt does not provide any useful information
in this regard.

There is an optional nextUpdate field for the case where the VA
receives periodic updates, which is very rarely the case in modern PKI.
This information is unlikely to be of practical use for a relying party’s
security policy. All of these timestamps are encoded in ASN.1 Gen-
eralizedTime strings. This format is more verbose than alternatives
such as POSIX time (i.e., seconds since the beginning of the year 1970),
which can be represented as a 4-byte integer.

The responseType field can be assumed to be of type id-pkix-
ocsp -basic without security implications or loss of applicability for
the target IoT scenarios.

The required signatureAlgorithm field can also be removed
without compromising security or losing relevant functionality. The
requesting party either has a copy of the VA certificate already, or
can obtain it through the OCSP response. X.509 certificates state which
signature algorithm the associated key pair is authorized to perform.

3.3. Extensions

OCSP offers a number of extensions, some which are valid for
requests and some for replies. All extensions are optional to implement
for both clients and servers. The list includes a nonce, detailed ex-
planations for a certificate’s revocation, preferred signature algorithms
and CRL download locations. We argue that with the exception of
a nonce, which is useful for replay attack detection and prevention,
these extensions are not necessary for constrained M2M environments,
where the drawbacks of added extension handling complexity outweigh
the benefits. Relying parties simply need to know whether or not to
reject a certificate, and have to delegate for instance advanced auditing
functionality to other less constrained system entities.

3.4. Redundant message echoing

The most notable performance drawback we have identified in
OCSP is the inclusion of request data in the response. The entire
reqCert request field is echoed back in the certID response field
(see Fig. 4). All extensions are also echoed back. On first inspection,
this may appear to be necessary, because the response signature is
computed over the entire tbsResponseData field. If the VA does not
sign a nonce, it serves no purpose. If the VA does not sign the certificate
identifiers, there is no way to prove which certificates the revocation
statuses belong to.

We circumvent the redundancy problem entirely with our new
protocol, TinyOCSP. No information included in the request is echoed
back in the response. Instead, the VA signs the concatenation of the

Journal of Information Security and Applications 73 (2023) 103424

5

J. Höglund et al.

Fig. 4. The encoded data structure of an OCSP response. The certID field contains a full copy of the reqCert field from the instigating request.

request and the authenticated response data. This ensures that the
association between the certificate identifiers and their statuses remains
authenticated, even though the response only contains the statuses.

A concluding overall remark after the OCSP analysis is that it is very
clear that the protocol has been designed for, and used by, non con-
strained devices with relatively good connectivity. For these scenarios
the inefficient encodings and potentially complex extension handling
are no major drawbacks, and does not need further optimization. A
comparable case is TLS, which has been complemented rather than
replaced with DTLS and other more lightweight protocols better suited
for IoT communication.

4. TinyOCSP: A lightweight alternative

Based on our findings in the preceding section, we devised a
lightweight version of OCSP, called TinyOCSP. We define a request
message sent by an RP, and the response sent by a VA. TinyOCSP mes-
sages are serialized with the Constrained Binary Object Representation
(CBOR) encoding scheme, rather than ASN.1. This has a few advantages
in constrained applications:

• CBOR is the recommended serialization layer for CoAP.
• CBOR is more concise than ASN.1.

• Embedded operating systems are unlikely to include a generalized
ASN.1 parser (i.e., not just for X.509 certificate handling).

In other words, TinyOCSP is much easier to implement on modern
constrained devices than OCSP. At the same time it keeps the critical
content and structure from the original OCSP, lowering the threshold
for servers to complement existing OCSP systems, to implement and
start using TinyOCSP.

4.1. TinyOCSP request encoding

The certificates of the issuing CA are identified in TinyOCSP using
the X.509 authority key identifier (AKID). RFC 5280 recommends using
an 8- or 20-byte value for this field, although any method for generating
a unique identifier is acceptable. This means that all end entities in
the PKI must include the X.509 AKID extension in their certificates,
so that they can be identified in requests. Using the AKID value to
identify the issuing CA eliminates the hash operations required by
OCSP requests and hence the need of the hashAlgorithm field. The
removal of these hashes is of negligible security concern. The purpose
of the certificate issuer identifier in OCSP is to handle cases where a
single VA is authorized to validate certificates issued by more than
one CA. It is extremely unlikely for two CAs to have the same 8-byte

Journal of Information Security and Applications 73 (2023) 103424

6

J. Höglund et al.

Fig. 5. The CBOR-encoded data structure of an TinyOCSP request.
(a) Gray boxes indicate an array containing any number of duplicates of its nested contents. Dashed boxes are optional to include.
(b) Shown as message payload in bytes, for querying the status of one certificate, including an optional nonce and CBOR headers.

Fig. 6. The CBOR-encoded data structure of an TinyOCSP response.
(a) The verified field contains certificate status codes in order corresponding to the verify field from the instigating request.
(b) Shown as message payload in bytes, for reporting the status of one certificate, including CBOR headers.

AKID if they have followed the recommended practices in RFC 5280.
As detailed in 3.1, the risk of collision does not break any security
properties of the system. An TinyOCSP request is illustrated in Fig. 5.

The exclusion of the optional request signature, together with the
accompanying requestorName field, saves both message bytes and
the computationally expensive signature computation. At the same time
it does remove an option for denial of service protection for the OCSP
server, which should be taken into account when setting up the server
protection.

It is crucial that highly constrained devices are able to indicate
whether or not they need the VA certificate appended to a validation
response, but OCSP has no mechanism to do this. This certificiate in-
clusion would be problematic to have as a default in highly constrained
environments, as a single X.509 certificate can be hundreds of bytes. We
address this issue by including a version code in TinyOCSP, which can
be used to request the VA certificate. This addition carries no security
implications.

4.2. TinyOCSP reply encoding

TinyOCSP drastically reduces the size of validation responses by
removing any and all data already known by the RP. Instead, the VA
signs the concatenation of the entire request and the authenticated
field in the response. This also allows the relying party to include a
nonce of any size in its request without increasing the response size.
Since only the concatenation with the original request data, which is
still kept and easily checked by the requesting device, will produce a
valid signature, this proposed reduction of the data sent will not impact
the security guarantees negatively (see Fig. 6).

Responses contain a POSIX timestamp, which totals 5 bytes after
CBOR encoding. By replacing the producedAt timestamp by the
thisUpdate timestamp, the requesting client will get the most sig-
nificant timing information to determine if the status information is
sufficiently recently updated. What is lost is the ability to automatically
determine whether the response was pre-computed by the server. By
including a nonce in the request, the client can ensure that the server
produces a new response. The verified array maps certificate revo-
cation reason codes (see RFC 5280 §5.3.1) to the certificates indicated

in the request. These are integers in the range 0 to 10, which can be
encoded in 1 byte with CBOR. The signature algorithm need not be
declared in the response, as this can be found in the VA certificate. An
adversary trying to misuse the lack of an explicit algorithm declaration
would render the reply useless, but does not risk letting a revoked
certificate pass.

4.3. Size comparison

The size of OCSP responses vary depending on the validation au-
thority’s configuration. Fig. 7 shows the size of encoded OCSP and Tiny-
OCSP validation messages in a best-case OCSP configuration scenario.
The VA uses its 8-byte subject key identifier in the responderID
field, rather than the more verbose subject identifier string option.
Signatures are generated with the prime256v1 ECDSA algorithm, which
is the de facto standard for constrained applications. (RSA requires
significantly larger signatures for equivalent security.)

The OCSP messages for validating a single certificate total 358
bytes. The corresponding TinyOCSP messages total only 96 bytes, a
73% reduction. Moreover, TinyOCSP performs significantly better when
several certificates are aggregated in one request. This is because each
validation adds only one byte (i.e., one additional status field) to
the TinyOCSP response, whereas OCSP echoes the entire certificate
identifier back.

4.4. Implementation

In the context of battery-powered devices, energy use is a top
importance metric of performance. In low power wireless personal
area networks (LoWPANs), packet loss is high, and the maximum
payload size before packet fragmentation is needed is low (81 bytes for
devices running 6LoWPAN over IEEE 802.15.14). As a result, marginal
increases in payload size can result in disproportionately higher energy
use.

We have implemented both OCSP and TinyOCSP on modern con-
strained hardware to evaluate their performance under realistic IoT
conditions. We selected the Zolertia Firefly Rev. B prototype board,

Journal of Information Security and Applications 73 (2023) 103424

7

J. Höglund et al.

Fig. 7. Encoded message sizes in OCSP and TinyOCSP. All requests contain a 4-byte
nonce. The certificates identified in the requests have 2-byte serial numbers and the
same issuing CA, which has an 8-byte key identifier. The VA certificate is not appended
to the responses.

which uses the Texas Instruments CC2538 system-on-chip. This SoC
features a 32-MHz ARM Cortex M3 microcontroller, 512 KB ROM and
hardware acceleration for both ECC and SHA-256. Although this device
has 32 KB of RAM, only 16 KB are retained in low power modes, which
are used extensively in IoT applications.

Both certificate validation protocols were implemented on the
Contiki-NG embedded operating system. We use Contiki-NG’s imple-
mentation of the following network protocols: TSCH MAC layer, RPL
routing, 6LoWPAN adaptation layer, IPv6 and CoAP. We flash one
Firefly with Contiki-NG’s RPL border router example code, which is
then connected to an Apple desktop computer via serial interface. This
desktop computer runs the VA server code. A second Firefly is flashed
with the client code running our OCSP and TinyOCSP implementa-
tions. This device communicates with the RPL border router via IEEE
802.15.4 2.4-GHz radio transmitting at 7 dBm output power.

Contiki-NG’s Energest module provides an API for recording the
number of clock cycles spent in the various CC2538 radio and CPU
states. The typical current draw in each of these states, according to
the device datasheet, are as follows: radio receiving 20 mA, radio
transmitting 34 mA, CPU on 13 mA, CPU low power mode 0.6 mA,
and CPU deep low power mode 1.3 𝜇A. The Firefly supplies 3.2 V to the
CC2538 chip when powered via USB. We use these values to estimate
energy consumption in our experiments with Eq. (1).

𝐸 = 𝑉 × 𝐼 × cycles∕𝑓clock (1)

For both OCSP and TinyOCSP, we evaluated the use case described
in Section 4.3. All certificate serial numbers are 2 bytes, all AKIDs are
8 bytes and a 4-byte nonce is included. The VA is configured to provide
the most concise OCSP responses allowed by the specification. Messages
for both protocols are transported over CoAP.

In our experiments, the certificate validation protocols perform one
hundred transactions with the VA for a range of certificate counts.
Energest monitoring is initiated when request encoding begins and is
terminated when the response signature has been verified. This means
that re-transmissions due to random packet loss and failed integrity
checks are captured in the measurements.

4.5. Results

The median energy consumed by TinyOCSP for one, two and three
validations was 50%, 59% and 63% less than OCSP, respectively.

Fig. 8. Distribution of energy consumption over one hundred OCSP transactions. These
data were estimated using Contiki-NG’s Energest module.

Fig. 9. Distribution of energy consumption over one hundred TinyOCSP transactions.
These data were estimated using Contiki-NG’s Energest module.

Validating eight certificates with TinyOCSP required 41% less energy
than validating a single certificate with OCSP, see Fig. 9. OCSP had
a significantly higher upper standard deviation for two and three
validations than any of the other test cases, see Fig. 8. This is most
likely due to random packet loss and re-transmissions, as the median
values still follow a linear upward trend, as one would expect. On lossy
wireless links, reducing message overhead by even a few hundred bytes
can significantly reduce radio use, which is often the greatest consumer
of energy on wireless devices. For larger multihop networks the cost of
packet losses and re-transmissions become further aggravated.

4.6. Memory discussion

The available RAM on embedded platforms is extremely scarce. To
put this in perspective, consider that Contiki-NG’s hello-world example
code occupies 11 of the 16 kilobytes of available RAM on the CC2538.
In order to enable CoAP and TSCH, the network protocol buffers must
be reduced to the minimum allowable values. Once this is done, there
are roughly 2 kilobytes of RAM available for any application-specific
code.

Journal of Information Security and Applications 73 (2023) 103424

8

J. Höglund et al.

In order to verify the signatures on responses, both protocol imple-
mentations allocated a buffer in RAM large enough to store the signed
data and the signature. For OCSP, this corresponds to the response size,
and for TinyOCSP, this corresponds to the size of the concatenation of
request and response. With a 256 byte buffer, our TinyOCSP implemen-
tation could handle at least eight validations at a time. Even with a 512
byte buffer, our OCSP implementation could only handle three.

TinyOCSP comfortably fits in the test platform’s available RAM with
roughly one kilobyte to spare. Our OCSP implementation is minimal –
only enough to generate a request with no extensions and parse the
corresponding response – yet it fills all of the test platform’s remaining
RAM. This is not to say that these implementations are highly opti-
mized, but in practical terms, it demonstrates that OCSP should not be
used on devices with stringent memory constraints.

4.7. Energy discussion

Savings of 50% or more on energy consumption for a single protocol
is a significant improvement for highly constrained devices. There
are numerous application areas where battery-powered, infrequently-
recharged devices are used in the Internet of Things [5]. Some of these
include:

• Industrial process automation (e.g., chemical plants, waste-water
treatment, refineries, oil platforms, etc.)

• Urban ecosystem monitoring (e.g., air quality, weather, traffic
conditions, waste, parking lot occupancy, etc.)

• Home automation (e.g., wireless door locks, radiator valve
drivers, window openers, etc.)

• Structural health monitoring (e.g., bridges, power stations, office
buildings, etc.)

• Container tracking

Replacing batteries on a large network of IoT devices, or on devices
which are difficult to access, incurs a high labor cost. Reducing the
energy consumption of frequently-performed operations can extend
their lifetimes by weeks or months.

Simple wireless sensors and actuators with months- or years-long
deployments often initiate connections with a few resource servers
upon activation, which will then be kept alive for its entire lifetime.
These devices spend most of their operating life in a dormant low-
power state, only waking up periodically to send a measurement or
request instruction. An appropriate security policy in these scenarios
would be to periodically check the revocation status of these servers’
certificates. These devices are therefore likely to send hundreds of
validation messages on a single charge.

5. CRL compression

Online validation with TinyOCSP provides a fresh, deterministic
proof of a certificate’s revocation status. Several researchers have ex-
perimented with Bloom filters (BF), a probabilistic data structure,
as a complementary system to online validation protocols [12–15].
With this approach, relying parties download a compressed certificate
revocation list (CCRL), which is a Bloom filter generated by the VA.
A revoked certificate will never be mistakenly identified as valid by
this CCRL. However, some valid certificates will appear to be revoked
according to a false positive rate 𝑝. As a result, all certificates identified
as revoked by the CCRL must be double-checked with a deterministic
validation protocol (e.g., OCSP or TinyOCSP). This approach aims to
reduce the number of online checks, thereby improving performance.

Related works in this area have demonstrated that the CCRL ap-
proach is feasible in some controlled use cases. Our contribution is a
set of equations for computing the optimal Bloom filter parameters, and
for predicting its performance in any use case. We then design a CCRL
validation protocol, predict its performance with our framework, and
verify those predictions through simulations.

5.1. Bloom filters

A Bloom filter is essentially a bitmap of a predetermined size m.
All bits are initially set to 0. A value is added to the data structure
by computing its hash with 𝑘 unique hash functions. Each output
represents the index of a bit, and these bits are all set to 1. Algorithm
1 depicts this algorithm applied to CRL compression. Checking the
membership of an arbitrary value in the set represented by the BF
follows a similar procedure. The value is hashed with each of the 𝑘
hash functions, and the values of the corresponding bits are retrieved.
If any bits are 0, the value is definitely not a member of the set. If all bits
are 1, it might be a member of the set. An increase in the number of hash
functions k does not automatically mean that the total size m must be
increased. Although with more hash functions the likelihood that all
test bits for a given membership test will be set to one is increased,
which in turn generates a larger set of potential memberships to be
further validated.

Algorithm 1 Procedure for generating an 𝑚-bit compressed CRL (CCRL)
with a Bloom filter using 𝑘 hash functions.
function Compress(CRL, 𝑚, 𝑘)

for 𝑖 ← 0 to 𝑚 do
CCRL[𝑖] ← 0

end for
for 𝑐 in CRL do

for 𝑖 ← 0 to 𝑘 do
𝑗 ← hash𝑖(𝑐) mod 𝑚
CCRL[𝑗] ← 1

end for
end for
return CCRL

end function

Algorithm 2 depicts the procedure for validating a set of certificates
𝑈 with a CCRL. Each certificate which cannot be definitively validated
by the BF is added to a set 𝑉 . This set of certificates is then passed to
the online backup (e.g., OCSP or TinyOCSP) to confirm whether or not
they are revoked.

Algorithm 2 Procedure for validating a set of certificates 𝑈 with an
𝑚-bit CCRL generated with 𝑘 hash functions. The set of certificates 𝑉
which are not definitively validated must then be re-checked with an
online validation protocol.
function Validate(CCRL, 𝑈 , 𝑘)

𝑉 ← ∅
for 𝑐 in 𝑈 do

for 𝑖 ← 0 to 𝑘 do
𝑗 ← hash𝑖(𝑐) mod 𝑚
if CCRL[𝑗] = 0 then

break
end if
if 𝑖 = 𝑘 then

𝑉 ← 𝑉 ∪ 𝑐
end if

end for
end for
ValidateOnline(𝑉)

end function

5.2. False positive rate

The false positive rate 𝑝 of a Bloom filter is the likelihood that all
bits indicated by the 𝑘 hash functions are 1 for an arbitrary input value.
This depends on the size 𝑚 of the filter (in bits), the number of values 𝑛

Journal of Information Security and Applications 73 (2023) 103424

9

J. Höglund et al.

which have been added to the filter, and the number of hash functions
𝑘. The upper bound on this value was derived in [29] and is given
by Eq. (2).

𝑝 ≤
(

1 − 𝑒
𝑘(𝑛+0.5)
𝑚−1

)𝑘
≈
(

1 − 𝑒−𝑘𝑛∕𝑚
)𝑘 (2)

In the context of this problem, 𝑛 is the number of certificates on the
CRL, which cannot be known in advance. (Certificate revocation only
occurs when an unforeseen complication forces the network adminis-
tration to end a certificate’s validity before the expiration date.) The
problem at hand is selecting the optimal values of 𝑘 and 𝑚 for a given
𝑛. In other words, the selection of optimal values of 𝑘 and 𝑚 creates the
most efficient filter encoding of the expected probabilities of certificate
revocation.

5.3. Quantifying validation cost

We approach this problem by defining a cost function for Bloom
filter retrieval 𝐶BF(𝑚) and for online validation 𝐶OV(𝑣), where 𝑣 is
the number of validations to be performed. Our metric for cost is
the total size of the information exchange between the relying party
and validation authority. (We consider only the information in these
protocols themselves, not the underlying network layers, which will
vary between applications.) We then define the total cost of the CCRL
validation procedure as a function 𝐶CCRL(𝑣, 𝑘, 𝑚, 𝑛).

Consider the case of validating 𝑣 = 2 certificates with the CCRL
procedure. Retrieving the Bloom filter incurs a fixed cost of 𝐶BF. Assum-
ing perfect hash functions, the membership checks for each certificate
in the BF are independent events, statistically speaking. The expected
value of 𝐶CCRL is, then, the sum of the fixed cost plus the sum of each
possible outcome of the membership checks multiplied by the cost of
the outcomes.

𝐶CCRL(2, 𝑘, 𝑚, 𝑛) = 𝐶BF(𝑚)

+ 𝐶OV(2)𝑝2

+ 𝐶OV(1)𝑝(𝑝 − 1)

+ 𝐶OV(1)(𝑝 − 1)𝑝

The likelihood that no additional online validations are needed is
equal to the likelihood that all membership checks provide a definitive
not revoked status, (𝑝−1)𝑣. We extrapolate this approach to an arbitrary
number of validations 𝑣, which gives us Eq. (3).

𝐶CCRL(𝑣, 𝑘, 𝑚, 𝑛) =
𝑣
∑

𝑖=1
𝐶OV(𝑖)

(

𝑣
𝑖

)

𝑝𝑖(1 − 𝑝)𝑣−𝑖

+ 𝐶BF(𝑚) (3)

The question of whether the CCRL procedure outperforms online vali-
dation acting alone can be restated as the following inequality:

𝐶CCRL(𝑣, 𝑘, 𝑚, 𝑛) < 𝐶OV(𝑣) (4)

When the above holds true, then the CCRL procedure will, on aver-
age, require a smaller data transfer between RP and VA than simply
validating all certificates with the online procedure.

5.4. Bloom filter retrieval

In order to proceed with this analysis, we introduce a hypothetical
protocol for Bloom filter retrieval so that 𝐶BF(𝑚) can be derived. For
simplicity, we make this as similar as possible to TinyOCSP. The request
and response encodings are shown in Figs. 10 and 11. The length
of a data structure encoded in CBOR is deterministic and simpler to
compute than the length of an ASN.1-encoded structure. Eq. (5) gives
𝐶BF(𝑚), in bits, based on this hypothetical protocol.

𝐶BF(𝑚) = 82 × 8 + 𝑚 (5)

Fig. 10. Hypothetical Bloom filter retrieval request CBOR encoding.

Fig. 11. Hypothetical Bloom filter retrieval response encoding. The ccrl field is a
byte array containing the Bloom filter.

Eq. (5) holds true for 23 < 𝑚∕8 < 28. Within these bounds, the
CBOR encoding of the ccrl field header is two bytes. We make the
assumption that 𝑚 is a multiple of 8; otherwise padding bits would be
required to encode the Bloom filter. This equation also accounts for a
4-byte nonce included in the request.

5.5. Equal-cost boundaries

Consider the use case described in Section 4.3. Under those assump-
tions, we derive cost functions for both OCSP and TinyOCSP, which are
shown in Eqs. (6) and (7). 𝐶OCSP is an approximation which is accurate
to within a few bytes; 𝐶TinyOCSP is exact for 𝑣 < 24. These functions
compute to the sum of the request and response sizes (see Fig. 7).

𝐶OCSP(𝑣) ≈ (148 × 𝑣 + 246) × 8 (6)

𝐶TinyOCSP(𝑣) = (14 × 𝑣 + 82) × 8 (7)

These cost functions can be substituted for 𝐶OV in Eq. (3). We now
apply an equation solver to compute the equal-cost boundary defined
by Eq. (4). Fig. 12 illustrates this boundary for OCSP when 𝑘 = 1 (which
is in the following section shown to be the optimal value for 𝑘). This
was computed with Python’s SciPy library.

We observe that given a sufficiently small CRL and enough valida-
tions, the CCRL procedure will outperform OCSP, on average. The same
can be said when CCRL is combined with TinyOCSP, although with
quite different boundaries, as shown in Fig. 13. One would need to be
validating dozens of certificates simultaneously for CCRL to outperform
TinyOCSP, assuming a few hundred revocations have occurred.

These plots must be viewed within the context of CRL sizes in real-
world applications. The frequency of certificate revocation is unpre-
dictable, because one of the most common reasons to revoke certificates
is a security breach. According to one study, less than 2% of TLS
Web server certificates were revoked in early 2014, which jumped to
over 8% later that year when the Heartbleed bug in OpenSSL was
discovered [30]. More research must be done to establish whether
similar revocation rates can be expected in the IoT.

5.6. Simulation

In order to verify the cost of CCRL operations predicted by Eq. (3),
we implemented Algorithms 1 and 2 on an Apple desktop computer and

Journal of Information Security and Applications 73 (2023) 103424

10

J. Höglund et al.

Fig. 12. The boundaries where both sides of Eq. (4) are equal for 𝑘 = 1. For values
of 𝑛 below these curves, validating certificates with the CCRL procedure incurs, on
average, a smaller message overhead than using OCSP for 𝑣 validations.

Fig. 13. Equal-cost boundaries for CCRL and TinyOCSP when 𝑘 = 1, computed
from Eq. (4) with Python’s SciPy library equation solver.

ran simulations. We consider the case where OCSP is used as the online
validation backup for 𝑣 = 8 simultaneous validations. The predicted
equal-cost boundary for this case with 𝑘 = 1 is shown in Fig. 12.

We approach this by selecting combinations of Bloom filter sizes
𝑚 and CRL sizes 𝑛 such that the expected equal-cost curve will be
captured in the simulations (i.e., the axis ranges on Fig. 12). For each
of these combinations, Algorithm 1 is executed once, and Algorithm
2 is executed 100 times with the newly created CCRL. All certificate
identifiers for both CCRL generation and validation are randomly gen-
erated. We record the mean transaction size (i.e., 𝐶CCRL) for each input
combination.

The results of this simulation with 𝑘 = 1 are displayed as a heatmap
in Fig. 14. The color of each pixel represents the mean observed 𝐶CCRL
divided by 𝐶OCSP(8). This normalizes the heatmap, such that a white
pixel indicates parity with the performance of OCSP used independently
(i.e., equal cost).

Thus far, we have only discussed the case of 𝑘 = 1 hash function for
the Bloom filter. We established that this is always the optimal value for
CCRL by running additional simulations. Increasing the number of hash
functions reduces the maximum value of 𝑛 on the equal-cost boundary,
thereby limiting the number of revocations that can occur before the

Fig. 14. Simulation results of the CCRL procedure used in conjunction with OCSP with
𝑣 = 8 certificates, 𝑘 = 1 hash function and 930 combinations of 𝑚 and 𝑛, executed 100
times each. The mean transaction size represented by each pixel is scaled by 𝐶OCSP(8),
such that a value of 1.0 indicates parity with OCSP for 𝑣 = 8 certificates.

Fig. 15. Simulation results of the CCRL procedure used in conjunction with OCSP for
𝑣 = 8 certificates, 𝑘 = 8 hash functions.

CCRL procedure becomes ineffective. This result is illustrated in Fig. 15,
which depicts the same simulation run using 𝑘 = 8 hash functions. We
observe that the maximum allowable CRL size has been approximately
halved.

These simulations demonstrate that Eq. (3) is an accurate predictor
of the message overheads incurred by the CCRL procedure. They also
confirm that there is a limit to the utility of the CCRL approach, as
defined by Eq. (4). As long as this inequality holds true, CCRL will, on
average, improve the performance of the online validation system used.

6. Security considerations

TinyOCSP and CCRL have been designed to improve the perfor-
mance of online certificate validation, thus enabling fully-fledged PKI

Journal of Information Security and Applications 73 (2023) 103424

11

J. Höglund et al.

credential management on even highly constrained Internet-connected
devices. It should be duly noted, however, that dependence on recent
certificate status information introduces new attack vectors. These
risks can be mitigated, and ultimately the advantages of phasing out
pre-shared keys in favor of PKI far outweigh the challenges.

This section provides a discussion of potential vulnerabilities to
online certificate validation systems in the IoT. These apply to all pro-
tocols discussed in this work, including those referenced in Section 2.

6.1. Denial of Service (DoS) attacks

Upon visiting a secure website, a Web browser receives the server’s
certificate via the TLS handshake. It will then wait to connect until it
has validated the certificate with either OCSP or a recently-downloaded
CRL. This system is resilient to DoS attacks against validation authori-
ties for two reasons: (1) there are many redundant VA servers and (2)
the CRL acts as an offline backup if all VAs become unreachable.

In contrast, highly constrained devices do not have enough memory
to store full CRLs, and thus have no offline backup. (CRL compression
with Bloom filters is non-deterministic and thus cannot be used in
isolation.) If devices cannot access any validation authorities, a choice
must be made to either accept or reject all certificates. In the former
case, an attacker that has successfully compromised a private key could
impersonate an authorized device in the organization by launching a
DoS attack on all available VAs. In the latter case, a denial of service
attack on all available VAs would effectively paralyze the network,
because the nodes would be unable to verify any credentials.

These risks should be viewed within the context of denial of ser-
vice attacks more generally. Although PKI does introduce additional
attack vectors, virtually all networked systems are already vulnerable
to DoS attacks. Modifications to existing firewalls may be advisable
when implementing TinyOCSP, but this particular risk should not be
the deciding factor in choosing between PKI or PSK-based security
solutions.

6.2. Replay attacks

The inclusion of a nonce in the validation request message is op-
tional in OCSP, TinyOCSP and CCRL because it incurs a trade off
between performance and security. On the Web, for example, validation
authorities receive many identical requests for certificates belonging to
popular websites. VA servers can conserve resources by pre-computing
responses for these certificates periodically. A single response can then
be copied to each requesting party without generating new signatures.

The use of pre-computed responses creates a window of vulnera-
bility, during which a revoked certificate will still appear valid until
the VA generates a fresh response. This must be considered when
configuring VA servers, regardless of the validation protocol.

An RP can force the VA to uniquely generate a response simply by
including a nonce in the request, as the VA must compute a signature
over this value. However, this should remain an optional feature in
TinyOCSP and CCRL, as it may be possible for an IoT network to
overwhelm a VA under normal operation due to the sheer number of
relying parties. This is only speculation, as certificate validation in the
IoT has not yet seen deployment.

6.3. Network time synchronization

Highly constrained devices are susceptible to clock drift and poor
clock rate stability, both of which make network time synchronization
challenging [31]. This has implications for online certificate validation,
because relying parties depend on the response timestamp to determine
the ‘‘freshness’’ of the information. If it appears that the response was
generated a significant amount of time before the request, or at some
point in the future, the relying party should reject it.

Unless a sufficiently accurate network time synchronization proto-
col is in place, devices must be configured to accept a potentially wide
range of timestamp values. Alternatively, they could be configured to
rely only on signed nonces and disregard the timestamp altogether.
This would prevent the VA from using pre-computed responses, as
discussed in Section 6.2, but this may be perfectly acceptable for many
IoT deployments.

7. Conclusions

This paper has presented TinyOCSP, a lightweight alternative to
OCSP. We have designed, implemented and evaluated this protocol
on state-of-the-art IoT hardware with low-power radio communication.
We have shown that TinyOCSP can validate at least eight certificates
simultaneously with a message buffer of less than 256 bytes, whereas
OCSP requires a buffer larger than this to validate just one certificate.
The message overhead for a single validation has been reduced by, at
minimum, 73%, which corresponded to a median energy reduction of
50% on constrained hardware in our experiments. For three simultane-
ous certificate validations, the message overhead reduction and energy
savings amounted to 81% and 63%, respectively. With the introduction
of this new protocol, it is now possible to implement fully fledged PKI
credential management in the Internet of Things.

We have also introduced a complementary, probabilistic certificate
validation protocol based on compressed certificate revocation lists
(CCRL). We have demonstrated that this approach, when used in con-
junction with TinyOCSP, can further reduce overhead. The equations
presented in Section 5 will be a useful tool for future researchers in
this area, as well as for IoT network administrators in the near future.
For interoperability across different vendors and the promotion of
widespread usage, we plan to push TinyOCSP for IETF standardization.

CRediT authorship contribution statement

Joel Höglund: Conceptualization, Software, Validation, Formal
analysis, Investigation, Writing – original draft, Writing – review &
editing, Visualization. Martin Furuhed: Conceptualization, Writing
– original draft, Writing – review & editing. Shahid Raza: Concep-
tualization, Methodology, Validation, Resources, Writing – original
draft, Writing – review & editing, Supervision, Project administration,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was partly supported by the Swedish Foundation for
Strategic Research (SSF) institute PhD program, and by the H2020
CONCORDIA (GA No. 830927) and ARCADIAN-IoT (GA No. 101020259)
projects.

References

[1] Hummen R, Ziegeldorf JH, Shafagh H, Raza S, Wehrle K. Towards viable
certificate-based authentication for the web of things. In: ACM workshop on
hot topics on wireless network security and privacy, co-located with ACM WiSec
2013. Budapest, Hungary; 2013, p. 0–5.

Journal of Information Security and Applications 73 (2023) 103424

12

J. Höglund et al.

[2] Santesson S, Myers M, Ankney R, Malpani A, Galperin S, Adams C. X.509 internet
public key infrastructure online certificate status protocol - OCSP. RFC 6960, RFC
Editor; 2013, URL http://www.rfc-editor.org/rfc/rfc6960.txt.

[3] Liu Y, Tome W, Zhang L, Choffnes D, Levin D, Maggs B, et al. An end-to-end
measurement of certificate revocation in the web’s PKI. In: Proceedings of the
2015 internet measurement conference. 2015, p. 183–96. http://dx.doi.org/10.
1145/2815675.2815685.

[4] Montenegro G, Hui J, Culler D, Kushalnagar N. Transmission of IPv6 packets
over IEEE 802.15.4 networks. RFC 4944, RFC Editor; 2007, http://dx.doi.org/
10.17487/RFC4944, URL https://rfc-editor.org/rfc/rfc4944.txt.

[5] Vasseur JP. Interconnecting smart objects with IP: the next internet. Morgan
Kaufmann; 2010.

[6] Shelby Z, Hartke K, Bormann C. The constrained application protocol (CoAP).
RFC 7252, RFC Editor; 2014, URL http://www.rfc-editor.org/rfc/rfc7252.txt.

[7] Bormann C, Hoffman P. Concise binary object representation (CBOR). RFC 7049,
RFC Editor; 2013.

[8] Selander G, Mattsson J, Palombini F, Seitz L. Object security for constrained
restful environments (OSCORE). In: Internet-draft draft-ietf-core-object-security-
15. IETF Secretariat; 2018, URL http://www.ietf.org/internet-drafts/draft-ietf-
core-object-security-15.txt.

[9] Selander G, Raza S, Furuhed M, Vucinic M. Protecting EST payloads with
OSCORE. In: Internet-draft draft-selander-ace-coap-est-oscore-02. IETF Secre-
tariat; 2019, URL http://www.ietf.org/internet-drafts/draft-selander-ace-coap-
est-oscore-02.txt.

[10] van der Stok P, Kampanakis P, Kumar S, Richardson M, Furuhed M, Raza S.
EST over secure CoAP (EST-coaps). In: Internet-draft draft-ietf-ace-coap-est-06.
IETF Secretariat; 2018, URL http://www.ietf.org/internet-drafts/draft-ietf-ace-
coap-est-06.txt.

[11] Pritikin M, Yee P, Harkins D. Enrollment over secure transport. RFC 7030, RFC
Editor; 2013.

[12] Raya M, Jungels D, Papadimitratos P, Aad I, Hubaux J-P. Certificate revoca-
tion in vehicular networks. In: Laboratory for computer communications and
applications. EPFL; 2006.

[13] Rabieh K, Mahmoud MMEA, Akkaya K, Tonyali S. Scalable certificate revocation
schemes for smart grid AMI networks using bloom filters. IEEE Trans Depend-
able Secure Comput 2017;14(4):420–32. http://dx.doi.org/10.1109/TDSC.2015.
2467385.

[14] Larisch J, Choffnes D, Levin D, Maggs BM, Mislove A, Wilson C. Crlite: A scalable
system for pushing all TLS revocations to all browsers. In: 2017 IEEE symposium
on security and privacy. IEEE; 2017, p. 539–56. http://dx.doi.org/10.1109/sp.
2017.17.

[15] Li Duan, Yong Li, Lijun Liao. Flexible certificate revocation list for efficient
authentication in IoT. In: Proceedings of the 8th international conference on
the internet of things. New York, NY, USA: ACM; 2018, p. 7:1–8. http://dx.
doi.org/10.1145/3277593.3277595, URL http://doi.acm.org/10.1145/3277593.
3277595.

[16] Bormann C, Ersue M, Keränen A. Terminology for constrained-node networks.
RFC 7228, RFC Editor; 2014, http://dx.doi.org/10.17487/RFC7228, URL https:
//rfc-editor.org/rfc/rfc7228.txt.

[17] Kocher PC. On certificate revocation and validation. In: Proceedings of the
second international conference on financial cryptography. London, UK, UK:
Springer-Verlag; 1998, p. 172–7, URL http://dl.acm.org/citation.cfm?id=647502.
728330.

[18] Goodrich MT, Tamassia R, Schwerin A. Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: Proceedings DARPA
information survivability conference and exposition II, Vol. 2. 2001, p. 68–82.
http://dx.doi.org/10.1109/DISCEX.2001.932160.

[19] Naor M, Nissim K. Certificate revocation and certificate update. IEEE J Sel Areas
Commun 2000;18(4):561–70. http://dx.doi.org/10.1109/49.839932.

[20] Micali S. Efficient certificate revocation. Technical report, Cambridge, MA, USA:
Massachusetts Institute of Technology; 1996.

[21] Micali S. NOVOMODO: Scalable certificate validation and simplified PKI man-
agement. In: Proceedings of the 1st annual PKI research workshop, Vol. 15.
2002.

[22] Lim TL, Lakshminarayanan A. On the performance of certificate validation
schemes based on pre-computed responses. In: IEEE GLOBECOM 2007 - IEEE
global telecommunications conference. 2007, p. 182–7. http://dx.doi.org/10.
1109/GLOCOM.2007.42.

[23] Gibson S. An evaluation of the effectiveness of chrome’s CRLSets. Gibson
Research Corportation; 2014, URL https://www.grc.com/revocation/crlsets.htm.

[24] Wang M, Qian C, Li X, Shi S. Collaborative validation of public-key certificates
for IoT by distributed caching. In: Proceedings of IEEE INFOCOM. Paris, France;
2019, p. 92–105.

[25] Wright RN, Lincoln PD, Millen JK. Efficient fault-tolerant certificate revocation.
In: Proceedings of the 7th ACM conference on computer and communications
security. New York, NY, USA: ACM; 2000, p. 19–24. http://dx.doi.org/10.1145/
352600.352605, URL http://doi.acm.org/10.1145/352600.352605.

[26] Stevens M, Bursztein E, Karpman P. Announcing the first SHA1 collision. Google
Security Blog; 2017, URL https://security.googleblog.com/2017/02/announcing-
first-sha1-collision.html.

[27] Foundation OS. OSCP manpage. 2018, URL https://www.openssl.org/docs/
manmaster/man1/ocsp.html.

[28] Jones J. The end of SHA-1 on the public web. Mozilla Security Blog;
2017, URL https://blog.mozilla.org/security/2017/02/23/the-end-of-sha-1-on-
the-public-web/.

[29] Goel A, Gupta P. Small subset queries and bloom filters using ternary associative
memories, with applications. In: Proceedings of the ACM SIGMETRICS interna-
tional conference on measurement and modeling of computer systems. New York,
NY, USA: ACM; 2010, p. 143–54. http://dx.doi.org/10.1145/1811039.1811056,
URL http://doi.acm.org/10.1145/1811039.1811056.

[30] Zhang L, Choffnes D, Levin D, Dumitraş T, Mislove A, Schulman A, et al.
Analysis of SSL certificate reissues and revocations in the wake of heartbleed. In:
Proceedings of the 2014 conference on internet measurement conference. New
York, NY, USA: ACM; 2014, p. 489–502. http://dx.doi.org/10.1145/2663716.
2663758, URL http://doi.acm.org/10.1145/2663716.2663758.

[31] Mani SK, Durairajan R, Barford P, Sommers J. A system for clock synchronization
in an internet of things. 2018, CoRR abs/1806.02474, arXiv:1806.02474.

Paper IV

AutoPKI: Public Key Infrastructure for IoT with Automated Trust Transfer

Joel Höglunda, Simon Bougeta, Martin Furuhedb, John Preuß Mattssonc, Göran Selanderc, Shahid Razaa

aRISE Research Institutes of Sweden,
Isafjordsgatan 22, 16440 Kista, Stockholm

bTechnology Nexus Secured Business Solutions,
Telefonvägen 26, 12626 Hägersten, Stockholm

cEricsson, Torshamnsgatan 21,
164 83 Stockholm, Sweden.

Abstract

IoT deployments grow in numbers and size, which makes questions of long-time support and maintainability
increasingly important. Without scalable and standard-compliant capabilities to transfer the control of IoT
devices between service providers, IoT system owners cannot ensure long-time maintainability, and risk vendor
lock-in. We propose AutoPKI, a lightweight protocol to update the IoT PKI credentials and shift the trusted
domains, enabling the transfer of control between IoT service providers, building upon the latest IoT standards
for secure communication and efficient encodings. We show that the overhead for the involved IoT devices
is small and that the overall required manual overhead can be minimized. We analyse the fulfilment of the
security requirements, and for a subset of them, we demonstrate that the desired security properties hold
through formal verification using the Tamarin prover.

Keywords: security, IoT, PKI, digital certificates, enrollment, embedded systems, Contiki

1. Introduction

IoT deployments are rapidly increasing, both in
numbers and in fields of use, including for safety and
security-critical applications. While there has been
a related fast development of accompanying security
solutions, there is currently a lack of services for long
time robustness and secure management.

Security solutions, such as secure communication
and authentication, have been adapted to suit also
relatively resource-constrained Internet of Things de-
vices. Based on these more primitive cryptographic
mechanisms, more complex services such as key es-
tablishment and certificate enrollment for IoT have
been proposed, and are getting standardised. To-
gether they form the basis of creating a Public Key
Infrastructure, PKI, capable of encompassing the In-
ternet of Things.

Email addresses: joel.hoglund@ri.se (Joel Höglund),
simon.bouget@ri.se (Simon Bouget),
martin.furuhed@nexusgroup.com (Martin Furuhed),
john.mattsson@ericsson.com (John Preuß Mattsson),
goran.selander@ericsson.com (Göran Selander),
shahid.raza@ri.se (Shahid Raza)

One of the important application areas for a func-
tional PKI for IoT is the creation of services for long
time support and maintainability of IoT deployment.
This is an area that is becoming ever more important
with the spread of IoT deployments. For a sustain-
able IoT ecosystem, there must be mechanisms for
trust transfer, how to efficiently update the IoT PKI
credentials and shift the trusted domains in order to
handle when the responsibilities of maintenance of
IoT devices are shifted from one service provider to
another. To amend the current gap where no well-
defined protocol exists, in this work, we map out and
propose a solution with references to existing pro-
tocols together with new proposals where there cur-
rently are no specified mechanisms.

To have a real-world impact, the proposed solu-
tion must, in addition to stringent security require-
ments, be scalable, resource-efficient, and as far as
possible build on agreed standards. To achieve scal-
ability, the overhead in terms of manual labour must
be kept minimal. Based on the above description, the
concrete problem formulation becomes: what is the
minimal procedure needed, in terms om manual in-

1
DRAFT

tervention, to securely shift the operation of one IoT
device from one service provider to another?

The criteria for a complete and successful trans-
fer of trust is when all involved IoT devices have en-
rolled and received new operational certificates, mak-
ing them recognized as valid participants of the target
organization PKI while meeting all the requirements
defined for the proposed protocol.

The main contributions of the paper are as fol-
lows:

• A design of a lightweight schema for trust trans-
fer, which allows the control of IoT deployments
to be shifted between service providers with
minimal manual overhead.

• A feasibility study using a prototype implemen-
tation for constrained IoT devices.

• A theorem prover based security analysis for
critical protocol security requirements.

The rest of this paper is organized as follows: Sec-
tion 2 presents a brief discussion of vital concepts
for the proposed protocol. Section 3 presents related
work. Section 4 gives a motivating scenario. Section
5 presents our threat model and assumptions. Sec-
tion 6 formalizes the requirements of the proposed
protocol. Section 7 explains the lifecycle operations
of a PKI-enabled IoT device, including new PKI opti-
mizations which make the security functionality suffi-
ciently lightweight, and optional security mechanisms
which are needed for the strongest security guaran-
tees. Section 8 presents the detailed scenario for Au-
toPKI together with our proposal for formalizing the
steps into a protocol with a maximal level of automa-
tion. Section 9 presents the results of the feasibility
evaluation, including a discussion from the business
perspective (9.4). In section 10 we present the secu-
rity assessment of the requirements, before conclud-
ing the paper.

2. Towards Automated PKI: background
technologies and challenges

This section introduces concepts and mechanisms
which are important for the creation of a PKI for IoT,
which are referred to in the rest of the paper.

2.1. Security services and PKI

When designing more complex security services,
encapsulating lower-level mechanisms as basic secu-
rity services provides a useful abstraction.

To establish and maintain trust from a system
perspective, authentication and authorization are two
key security services.

An authentication service provides the necessary
trustworthy binding between an entity and, in the
case of a PKI, a public key. This functionality in
turn can be used to create an authorization mecha-
nism, which ensures that an authenticated actor can
perform exactly the actions they are entitled to and
no other actions.

The full system needed to manage the authenti-
cation services and their artefacts; certificates, keys,
policies and roles, forms a Public Key Infrastructure,
PKI.

2.2. PKI hierarchies

A cornerstone of PKIs is authentication through
publicly available keys, keys encapsulated in certifi-
cates signed by a certificate authority, CA. The cer-
tificate authorities are identified by their certificates
which can be either self-signed or signed by another
CA. This system of signed certificates forms hierar-
chies up to the self-signed top/root CAs. The re-
sulting chains of certificates can be verified up to the
top nodes, but the self-signed root nodes need to be
already trusted [1].

The party traversing the certificate chain and per-
forming the authentication must have access to the
top node certificates, in a trusted manner. Practically
for IoT devices, this means they should be equipped
with the necessary root certificates in their local trust
stores. The placement can happen before deployment
through factory pre-programming, and/or dynami-
cally through enrollment operations1.

The IoT devices act as leaf nodes at the lowest
layers of the CA hierarchies, together with the ser-
vice provider servers, with which the devices need to
communicate. Figure 1 illustrates some alternatives
for CA hierarchies, depending on the trust relations
between the entities, involving two different service
providers and IoT devices. For the task of securely
transferring control of IoT deployments, the impli-
cations of the different CA hierarchies illustrated in
1 are the following: If the trust hierarchies are com-
pletely separated, as in 1a, the IoT device needs to be
equipped with a root certificate for CA1 in advance of

1The last years’ advancements in both IoT capabilities and
solutions targeting IoT have made PKI enrollment solutions
feasible for IoT as well [2, 3].

2
DRAFT

Long time
CA

CA 1

SP 1 IoT device

CA 2

SP 2

(a) Three separate trust roots

Long time
CA

CA 1

SP 1 IoT device

CA 2

SP 2

(b) Two separate trust roots

Long time
CA

CA 1

SP 1 IoT device

CA 2

SP 2

(c) One trust root, different operational CAs

Long time CA

CA 1 = CA 2

SP 1 IoT device SP 2

Long time
CA

 CA 1 =
CA 2

(d) One trust root, one operational CA

Figure 1: Different options for CA hierarchies. All arrows represent certificate issuing, green arrows for factory certificates, blue
arrows for operational IoT certificates

the first enrollment, to be able to authenticate CA1.
Correspondingly the device must be updated with a
root certificate needed to authenticate CA2 in ad-
vance of the trust transfer. In the case where the
CA1 is a sub-CA of the permanent CA, as shown in
1b, it is sufficient to provide an update with the a
root certificate for CA2. For the relationships shown
in 1c and 1d, all entities can be authenticated with
only prior access to the certificate of the permanent
CA.

There can be performance reasons to go beyond
the minimal requirements for which root certificates
that must be added to the IoT device trust store.
By providing additional certificates from the servers
with which the IoT device needs to communicate,
certificate reference-based authentication can be en-
abled. This allows the communicating parties to send
hashes of certificates, which the counterpart already
possesses, rather than full certificates and certificate
chains. This type of reference-based public key au-

thentication is for instance supported in EDHOC key
establishment [4].

2.3. The concept of trust in PKI

From the PKI perspective, trust is something
that can be established between two or more parties
with help from the infrastructure and the concept of
trusted root nodes [1]. The more general discussion
on trust is a large topic with a multitude of over-
lapping definitions. Two perspectives of relevance
for this work are: A systems perspective, defined as
trust that the system will provide the desired ser-
vices, without unintended or undesired side effects.
Complemented by an organisational perspective, de-
fined as trust that the involved parties will live up
to the obligations they have agreed to, formalized
through one or more contracts. Without the latter,
the involved parties will not reach the former, the
confidence in the system. For much more in-depth
discussions on the concept of trust see [5]. In order

3
DRAFT

to automatize and scale up the number of operations
it becomes crucial to provide mechanisms such that
all relevant obligations can be tracked and audited to
the degree deemed necessary, with low overhead.

3. Related Work

Ownership Transfer: The closely related area of
ownership transfer for IoT has been studied from the
perspectives of single-user privacy protection and cus-
tom non PKI-based solutions. In [6] the focus is on
the privacy and protection of smart home device data.
A custom solution for creating user profiles, and au-
tomatically detecting ownership changes for individ-
ual devices is presented. Compared with our efforts,
this is on the opposite end of standard compliance,
where automatization is used not for reducing costs
and handling scale, but for the convenience of indi-
vidual users and end-user privacy protection.

In [7] a custom non-standard solution is proposed,
where the authors specifically do not assume PKI
support from the devices. Their focus is on ensuring
forward and backward security between the former
and new owners. The solution is based on symmetric
keys and a trusted third party. Despite the differences
in assumptions concerning PKI support and standard
compliance, they investigate a similar scenario as we
do, and some of their requirements have relevance to
our solution as well.

PKI alternatives: For scenarios with IoT devices
that are not capable of running PKI mechanisms at
all, a number of different custom-made solutions have
been proposed. Even for the most constrained de-
vices such as RFID, there are proposals for mutual
authentication which, although the master secrets are
non-replaceable, include mechanisms to avoid replay
attacks [8]. For devices with more capabilities [9]
presents a hierarchical model, as well as a compar-
ison with other similar solutions.

These solutions do not offer real end-to-end secu-
rity, introduce complex intermediaries, and are cur-
rently not being standardised. Parts of the solutions
which are proposed specifically for local Wireless Sen-
sor Networks (WSNs), could be used complementary
with full-fledged PKI mechanisms to solve issues re-
lated to initial bootstrapping and initial link layer
security key distribution.

4. E-health use case: IoT ownership change
and AutoPKI

To introduce the trust transfer problem, and give
a motivating example that illustrates some of the in-
volved actors, we present a brief high-level use case
where the proposed protocol applies.

A municipality wants to invest in e-health solu-
tions to strengthen its elderly care monitoring capa-
bilities. The goal is to equip beds with a number of
wireless sensors to detect movement and rise an alarm
if the person in the bed is on the brink of falling out.
Since the municipality lacks the operational resources
themselves, they procure the purchase, installation,
and operation from an external service provider, SP1
hereafter. To prevent vendor lock-in, the municipal-
ity demands that open standards must be used and
that the capabilities to shift the service provider must
be ensured. The monitoring system must also be easy
to integrate with existing systems in the municipality
for the handling of personnel and access to personal
data.

After some time of operation, the municipality
wants to upgrade their system for personnel access.
As the new solution would require costly modifica-
tions to work with the existing IoT service provider
they decide to swap service providers with someone
already capable of interacting with the new personnel
access system.

The municipality does a new procurement and in-
structs the original service provider to hand over op-
erations to the selected new service provider, SP2.
The new service provider securely gains control of the
IoT devices and continues the monitoring services.

For the interactions involved in the handover to
be both secure and efficient in terms of minimal man-
ual efforts, a protocol is needed. In the following, we
present an enabling PKI environment, details on the
required interactions, and how our proposed proto-
col fulfills desired security properties while enabling
a high degree of automatization.

5. System and threat model

The main targets of the proposed protocol are IoT
deployments with device-to-server communication as
the most common communication pattern. We con-
sider IoT devices that are constrained in terms of
both bandwidth and computational resources. They
are computationally powerful enough to perform

4
DRAFT

asymmetric crypto operations, but to keep energy
budgets limited, computationally expensive opera-
tions must be used sparsely. In addition, devices are
often communicating using radio, over wireless low-
power networks, which adds packet size constraints
and the need to handle packet losses.

We assume the Dolev-Yao adversarial model [10],
where the potential attackers have full access to the
network. They can eavesdrop any message being sent,
record messages, and inject both old and modified
messages into ongoing communication. Regarding
the IoT devices themselves it is assumed that they are
not physically tampered with. Regarding the crypto-
graphic functions used, it is assumed that they cannot
be broken within the relevant time span.

As a baseline, we assume that the involved service
providers establish mutual trust, in such a way that
they will not actively attack the counterpart. Unless
prevented, they might still be interested in gathering
leaked data. We return to these assumptions in rela-
tion to remote attestation (section 8.3) and our for-
mal analysis, where we also consider the case where
SP1 acts as an attacker (section 10).

6. Requirements

Based on the above description of challenges and
threats we arrive at the following requirements for a
trust transfer protocol.

FR1: Integrity protection. If the protocol terminates,
we are certain that an attacker has not been able
to modify any protocol message received by the IoT
device.

FR2: Man-in-middle resistance. An adversary can-
not use eavesdropped traffic to successfully hijack a
transfer protocol session.

FR3: Forward security. The old service provider
shall not get access to any private data which can
compromise the privacy of the new service provider
and its onward operations.

FR4: Backward security. The new service provider
shall not get access to any private data belonging
to the old service provider, which is not explicitly
agreed to be shared.

These functional requirements make statements
about the desired state at the end of a completed

C: Initial requirement
specification

C: Update
requirements

CA1: Enrollment

C+SP1: Procurement
and contract
negotiations

SP1: Acquisition and
setup

 deployment

C+SP1: Regular
operations

 certificate expiration

Device retirement

 agreement on contract and SLA

Change of
operator

 software updates

Figure 2: The IoT life cycle

protocol run. In addition, we identify the following
non-functional requirements, related to scalability
and interoperability:

NFR1: Automatization. The protocol must offer the
desired functionality with a minimum of manual in-
tervention.

NFR2: Resource efficiency. The protocol must allow
all operations directly involving the IoT devices to be
sufficiently lightweight to run on relatively resource-
constrained devices.

NFR3: Standard compliance. To be feasible for adop-
tion by the industry, the protocol must build upon
existing and ongoing standardization efforts wherever
possible.

7. AutoPKI life cycle

The main enabler for an IoT device to gain access
to a number of crucial security services is to be part of
a PKI. It is necessary for the goal of offering standard-
based interoperability and preventing vendor lock-in.

5
DRAFT

Permanent
CA

SP 1 IoT
device

trust agreement
<SLA>

MAC ID readout

MAC IDs + CSRs
<PKCS#10>

Factory certificates
<x5bag>

CA 1
trust agreement

<SLA>

Factory certificates
<x5bag>

CA 1 path
<URI>

Factory certificate
+Private key

+Initial CA trust store
+CA 1 path

Shipped and deployed
Bootstrapping

Initial enrollment, using <EST-coaps> or <LICE>

Figure 3: The IoT device’s initial life cycle stages, showing
the standards used for setup and enrollment. Red arrows cor-
respond to operations where manual intervention is expected.
Green arrows are deployment-specific, while black arrows are
standard-based and fully automated.

Making resource-constrained IoT devices parts of a
PKI is a nontrivial task. To give the context for how
the task can be achieved, we present existing and pro-
posed solutions for how an appropriate environment
for trust transfer can be created. We cover the first
stages in the PKI for IoT life cycle, while adhering to
existing standards for all steps wherever possible. A
high-level overview of the life cycle is shown in figure
2. A more detailed diagram of the initial life cycle
phases is given in figure 3.

Scope and limitations. We address the issues directly
related to public key management, needed to guar-
antee the required security services. In addition,
a deployment might have other functional require-
ments such as downtime constraints which need to be
treated separately and be factored in when scheduling
the actions to be performed.

Involved actors. In the first steps of the life cycle de-
scription the following actors and roles (briefly men-
tioned in 4) are relevant to specify: CA: A well-
established and reliable certificate authority (Perma-
nent CA): A certificate authority that can be trusted
for an extended period of time, suitable for providing
long-lived trust root(s) to the initial device truststore.

SU: The IoT service user, who is also the system
owner (owner/user). This is the actor (company or
organization) who uses the IoT system to achieve a
goal. The goal can be internal, as a service end user,
or as a part of providing services to other third par-
ties.

SP1: The initial IoT service provider; the com-
pany which is in charge of configuring the IoT devices,
installing them and, initially, maintaining them.

CA1: The initial operational CA; the certificate
authority with which SP1 has made an agreement to
provide operational certificates, including certificate
renewals when needed. It can be the same as the
permanent CA.

7.1. Procurement, SLAs and Smart Contracts

The starting point for the scenario is that a com-
pany or an organization, SU, has identified a need
that can be fulfilled with an IoT system. The IoT sys-
tem needs to be clearly specified, ordered, deployed,
and thereafter maintained. The deployment could be
within the SU’s own premises, or within any other
area where they have obligations to perform moni-
toring or offer services that can be aided by the IoT
installation.

As part of the procurement process, the SU spec-
ifies service-level agreement conditions that must be
met. In this work, we focus on those directly related
to PKI and trust management. This includes spec-
ifying that the chosen IoT service provider must be
able to transfer the role of system maintainer to a
new service provider without breaching agreed secu-
rity guarantees. The demands could also specify addi-
tional criteria for minimal service disruptions during
any system update.

SLAs and Smart Contracts. In line with the efforts
to lessen the burden of manual intervention in any
software service operation, service level agreements,
SLAs, can be used to formalize contractual agree-
ments in a manner suitable for automated checking
[11]. Specifically, to lessen the dependency on ad-
ditional trusted third parties, smart contracts (SC)

6
DRAFT

running on blockchain infrastructure have been pro-
posed for the automatizing and monitoring of service-
level agreements. This type of solution could poten-
tially further remove the need for human involvement.
Early proposals such as [12] considered cloud envi-
ronments, while newer work address also IoT sce-
narious. For example, in [13] the authors propose
a Hyperledger Fabric-based system for SLA compli-
ance assessment, with applications for IoT. Smart
contracts themselves cannot directly access data out-
side of their blockchain environment, hence a solution
for monitoring service parameters will depend on so-
called oracles, data feeds that connect the contracts
to off-chain information [14].

The field of using SCs for SLA monitoring is an
active area of research, where more work is needed
before the solutions have reached industry maturity.
From the perspective of our trust transfer proposal,
details on how SLAs are monitored and acted upon
are outside the scope.

An IoT provider who accepts the required con-
ditions gets the order. Together the SU and the IoT
service provider, hereafter SP1, formalize the require-
ments in a contract containing the agreed upon ser-
vice level agreement. Besides quality of service spec-
ifications, the parties clarify the service endpoints to
be used for accessing services and data.

7.2. Device acquisition, factory credential and
firmware preparations

The SP1 acquires IoT devices that meet the func-
tional sensing and actuation requirements of the cus-
tomer, as well as the non-functional requirements re-
garding security protocol support and update capa-
bilities. The section corresponds to the Acquisition
and setup stage of figure 2.

A vital part of a PKI capable of handling IoT
devices with minimal manual intervention is how to
prepare the devices, such that they can perform ini-
tial authentication operations once deployed. To per-
form mutual authentication the device must be able
to identify itself to a server and have means to au-
thenticate the server with which it is communicating.

The practical solution is to pre-program devices
with a secret factory key and a factory certificate,
plus an initial truststore containing server certifi-
cates. For the general case, the device needs both the
server certificates forming the certificate chain up to
the CA root of the factory certificate, plus additional

root certificates to authenticate servers with certifi-
cates belonging to other root CAs.

All IoT devices come with unique IDs when they
are delivered from the manufacturer. In the follow-
ing, we assume that the SP1 uses the unique device
IDs provided by the manufacturer as the basis for
the device names in the factory certificates. The de-
vice IDs might be matched between a list of IDs and
stickers on the devices, or through QR codes, or ex-
tracted through some programming port. The exact
measures will depend on the device type at hand.

If the IoT device is equipped with a secure and
protected hardware module, it can implement the
802.1AR standard for Secure Device Identities, Dev-
IDs [15]. The hardware requirements make the stan-
dard less suitable for the most constrained IoT de-
vices, but for sufficiently capable devices the module
can be used to offer also physical tampering protec-
tion.

The SP1 has an agreement with a CA that they
trust, allowing them to order long-lived factory cer-
tificates. This agreement must be compatible with
the conditions in the SLA made with the SU regard-
ing the long-time availability of the CA. The IoT fac-
tory certificate should have a lifetime corresponding
to the lifetime of the IoT device itself. Hence it is
extra important to strive for access to an entity that
can reply to inquiries about the certificate revocation
status for all of the expected device lifetime.

The SP1 generates cryptographic keypairs and
creates certificate signing requests, CSRs, for all IoT
devices that should receive factory certificates. The
requests are communicated to the permanent CA,
which creates factory certificates and sends them
back. This communication takes place over the reg-
ular Internet and is therefore not restricted in terms
of bandwidth. The certificate signing requests can
therefore be sent using the verbose PKCS#10 stan-
dard [16]. Since the targets are IoT devices, it is
beneficial if the resulting factory certificates are com-
pact. Using the proposed C509 certificate format re-
sults in significantly more compact certificates com-
pared with X509, especially when using ECC crypto
keys, offering the strongest cryptographic guarantees
at relatively short key lengths [17] (see also section
7.3 below). The CSRs as well as the replies can be
sent one by one as needed or collected and sent in
batches. All of the communication happens over a
TLS-secured communication link. If the key pairs for
the factory certificates are generated outside of the

7
DRAFT

target IoT devices, extra care must be taken to en-
sure the private keys are not leaked. Preferably they
should be kept in a Hardware Security Module, HSM,
and destroyed on the server side after being uploaded
to the target devices.

It is worth emphasising that the long-term fac-
tory certificates should be restricted in terms of oper-
ational capabilities, allowing only the authenticating
of the device for doing an enrollment operation and
special device updates. The initial post-deployment
enrollment is what assigns an operational certificate
to the device, with the needed capabilities to oper-
ate within the SP1 infrastructure. Hence the devices
need to be given information on which CA to contact
for operational enrollment.

SP1 contacts a CA which will act as the opera-
tional CA, CA1. Unless CA1 is the same as the per-
manent CA, the operational CA needs to be updated
about the identities of the devices to which it should
be prepared to grant operational certificates to. This
is solved by sharing the factory certificates. A pro-
posed format with minimal overhead is an x5bag, in
which certificates are wrapped in byte strings, and
placed in a CBOR array [18]. In return, the SP1 is
given the URI that the IoT devices should contact for
the enrollment of operational certificates.

The data exchange between the SP1 and the CA1
can be fully automatised, given a pre-existing con-
tract which specifies the rights for any device, which
can authenticate itself using a private key correspond-
ing to one of the shared factory certificates, to request
an operational certificate.

At this point, the SP1 is equipped with the data
needed to do the initial programming of devices,
which provides the device with its initial firmware,
including a factory private key, factory certificate,
initial truststore, an SP server URI and information
on the CA-URI. The initial programming and data
transfer to the IoT devices take place in a trusted
environment.

The steps covered until this point are illustrated
in figure 3 up until ”Shipped and deployed”.

7.3. C509 Certificates

One of the obstacles to using PKI for IoT has
been the prohibitive overhead created by having to
handle lengthy X.509 certificates. To reduce the over-
head we have proposed a more compact encoding us-
ing CBOR, the C509 certificate format [17]. Besides
the savings due to CBOR being more compact than

ASN.1, the encoding makes use of domain knowledge
to extend the savings beyond general compression. It
includes compression of elliptic curve points, replace-
ment of long OIDs with short integers and removal of
known static fields. The format can either be used na-
tively, if the involved CAs and servers understand the
format or in a compatibility mode where the certifi-
cate signature verification is done on a reconstructed
X509 certificate.

The format of the current C509 version is given
by the following CDDL:

Listing 1: C509Certificate

C509Certificate = [

TBSCertificate,

issuerSignatureValue : any,

]

; The elements of the following group are used in a

CBOR Sequence:

TBSCertificate = (

c509CertificateType: int,

certificateSerialNumber: CertificateSerialNumber,

issuer: Name,

validityNotBefore: Time,

validityNotAfter: Time,

subject: Name,

subjectPublicKeyAlgorithm: AlgorithmIdentifier,

subjectPublicKey: any,

extensions: Extensions,

issuerSignatureAlgorithm: AlgorithmIdentifier,

)

CertificateSerialNumber = ~biguint

Name = [* RelativeDistinguishedName] / text / bytes

RelativeDistinguishedName = Attribute / [2*

Attribute]

Attribute = (attributeType: int, attributeValue:

text) //

(attributeType: ~oid, attributeValue: bytes)

Time = ~time / null

AlgorithmIdentifier = int / ~oid /

[algorithm: ~oid, parameters: bytes]

Extensions = [* Extension] / int

Extension = (extensionID: int, extensionValue: any)

//

(extensionID: ~oid, ? critical: true,

extensionValue: bytes)

The initial focus was to encode all certificates fol-
lowing the IoT profile given in RFC 7925 [19]. The

8
DRAFT

work has been expanded to specify identifiers (using
short integers) for a more general set of extensions,
attributes and algorithms for keys and signatures.
Together these cover a wide range of well-behaved
cases, while still allowing more lengthy byte repre-
sentations of rare cases. Certificates compliant with
a number of significant certificate profiles, such as
IEEE 802.1AR, CNSA, and RPKI, can be encoded,
resulting in a good general RFC 5280 coverage. Con-
sequently, unless the service provider has very specific
needs, not only the IoT certificate but also the server
certificates that the IoT device needs to handle can be
compactly C509 encoded, greatly reducing the over-
head for PKI-related communication and certificate
handling.

7.4. Deployment and initial enrollment

The device is physically installed in its target en-
vironment. Depending on the contract between the
SP1 and the SU, this can be done by the SP1, by the
SU themselves or by a trusted third party.

A full specification of a concrete deployment needs
to address further practical details, such as boot-
strapping, seeding of the device time source and if
there are policies to use for re-assigning dynamic
MAC addresses. These issues are highly dependent
on the operator and the deployment scenario. For ex-
ample, how to securely provision a time source is an
open issue. The latest available relevant standards,
such as BRSKI, allow IoT devices to ignore the cer-
tificate validity periods during initial authentication
if the device has not yet been given a reliable cur-
rent time [20]. In the following, we assume that the
deployment-specific bootstrapping issues have been
solved.

Upon startup, the IoT device contacts the CA1 to
do initial enrollment and be given an operational cer-
tificate. The device authenticates itself through the
factory certificate which is registered with the CA1.
The factory certificate also serves to authorize the re-
quest for an operational certificate. Mutual authenti-
cation is done as part of establishing a secure channel,
using either a DTLS or EDHOC handshake.

The IoT device sends a certificate signing re-
quest to the operational CA, using the proposed C509
CBOR format [17], or the less compact PKCS#10-
format for legacy systems. The CA replies with an
operational certificate, in either C509 or X509 format.

The choice of format depends on whether the en-
rollment is done following the older EST-coaps [21]

SP 1 IoT
device

IoT
servers

Revocation management

Secure communication

Software update(s)
<SUIT>

Figure 4: The IoT interactions during normal operations.

or the proposed more flexible EDHOC-based enroll-
ment protocol [3]. If the device is using the proposed
compact enrollment protocol the enrollment message
exchange can be encapsulated already inside an ED-
HOC handshake.

IoT devices with sufficient computational re-
sources are capable of generating the key pair them-
selves, which is the preferred solution whenever avail-
able, as the private key never needs to leave the de-
vice. For the most constrained devices, a similar
enrollment approach is feasible also for requesting a
server-generated key pair.

Note on trust: The IoT device trusts the opera-
tional CA, given that the device has authenticated it
during the handshake, and believes the given CA-URI
to be valid.

7.5. Normal operations

After the enrollment, the IoT device is equipped
with an operational certificate which is recognized by
the servers it needs to communicate with, and has an
updated truststore which ensures that the device can
perform authentication of all endpoints of relevance.

During normal operations, the SP1 ensures the
IoT devices are kept up to date with software
upgrades, following the SUIT architecture mecha-
nisms [22]. Before the operational certificate expires,
the device will do re-enrollment with the CA1. The
normal operations are illustrated in figure 4.

8. IoT Trust Transfer

8.1. Introduction and problem formulation

A motivating high-level use case was given in 4.
In general terms, the IoT service user, SU, decides
that they want to switch service providers for their
IoT services while maintaining their existing deploy-
ments and installations. This is the high-level goal
which should be achieved with a minimum of service

9
DRAFT

disruptions and with a minimal need of human inter-
vention.

Today the operations needed for a secure own-
ership transfer between operators are insufficiently
specified. Without clear protocols, the task becomes
at best very labour intensive with several manual
steps which need to be tailor-made to the specific
scenario. At worst, impossible.

In the following we detail the needed steps, re-
ferring to existing standards where applicable, and
proposing solutions for the missing parts. An illus-
tration of the resulting protocol flow is given in figure
5, and the pseudocode for the main actors is listed in
the three procedures below.

8.2. Additional involved actors

In addition to the actors introduced in 7, the fol-
lowing are included.

SP2: A second IoT service provider; the company
selected by the SU to overtake the responsibilities to
maintain the IoT devices from SP1.

CA2: second operational CA; the certificate au-
thority with which SP2 has made an agreement to
provide operational certificates.

8.3. Preparations for operator change

If the need arises for the customer to switch ser-
vice providers, the initial contract (see 7.1) specifies
that the current service provider SP1 needs to con-
tact the designated new service provider, SP2. This
step might include manual efforts, in forming a spe-
cific contract which specifies the details of transac-
tions which are about to take place. Specifically, it
needs to specify a starting date from when SP2 must
be ready to start maintaining the IoT devices, within
the total allowed time span defined by the SU.

SP1 and SP2 need to agree on the state of the
IoT firmware, in particular, which services and which
versions of the services the IoT devices will provide
at the time of shifting the maintenance responsibili-
ties. A solution to automatize the auditing of the IoT
device state is to use remote attestation.

Remote attestation, RA, is an advanced security
service that has attracted increased attention over the
last couple of years. In remote attestation, a device
produces a proof of its current state, regarding soft-
ware, hardware, or both, which is checked and verified
by a trusted third party to be in accordance with the
expected output.

Procedure SP1 procedures

Overall prerequisites Existing SLAs between
SP1 and SP2, as well as between SP2 and CA2

procedure trust transfer()

Input : SP2 URI, List of certificates

prepare UpdateInfoList
secure send(SP2, UpdateInfoList)
wait for(ServerTransferMessage)
receive(ServerTransferMessage)

if valid(outer signatureSP2) then
foreach IoT device ⊂ UpdateList do

prepare IoTTransferMessage tm:
signatureSP1 ← signSP1 (payloadSP2,
signatureSP2, fallbackURI)

tm ← (payloadSP2, signatureSP2,
fallbackURI, signatureSP1)

iot device update(IoT device, tm)

end

else

abort and rise error
end

end procedure

procedure iot device update(td, tm)

Input : target device td, IoTTransferMessage tm

if final sw updates then

perform iot update(td)
end

send(tm)
end procedure

To offer the strongest security guarantees, RA re-
lies on access to a trusted hardware component for
the device being attested, such as TPM or Arm Trust-
Zone. More constrained IoT devices do not have ac-
cess to these dedicated hardware resources. There are
also software-based RA solutions and hybrid versions
with limited requirements on protected memory ar-
eas. There is active research in the area [23] as well
as a large ongoing IETF standardisation effort [24].

In addition to agreeing on the RA details, the
parties will declare which certificates to be used for
signing protocol data.

When the trust relationship is established and a
transfer specification contract is formed, the old ser-
vice provider can share device information with the
new service provider.

The information exchange needs to contain the
following data items:

- The factory certificates for every involved IoT

10
DRAFT

Procedure SP2 procedures

procedure info sharing(uil)

Input : UpdateInfoList uil

foreach cert ⊂ uil do
assert certupdate period ⊆ SLAupdate period

end

Parse factory certificates into x5bag collection
secure send(CA2, x5bag)
wait for(CA2 path msg)
receive(CA2 path msg)

Prepare ServerTransferMessage stm:
foreach cert ⊂ uil do

Prepare payloadIoT ID:
set time limits
if use RA then

payloadIoT ID.RA URI ← RA URI
end

payloadIoT ID.updateURI ← SP2 server URI
if update before enrollment then

payloadIoT ID.updateFlag ← TRUE
end

payloadIoT ID.enrollURI ← CA2 path
payloadIoT ID.signature ← signSP2

(payloadIoT ID)
end

Add payloads into stm
signSP2 (stm)
secure send(SP1, stm)
end procedure

procedure cm processing(cm)

Input : ConfirmationMessage cm

if valid(outer signaturecm:IoT.op key) then
if valid(inner signaturecm:IoT.factory key)
then

Include IoT in set of valid devices
end

end

if ∀ IoT: cm is received then
TrustTransfer completed

end

end procedure

Optional remote attestation
Receive and validate the results of remote
attestation

Optional software updates
provide software updates to requesting IoT
devices

device for which the responsibility of maintenance is
about to be transferred from SP1 to SP2.

Procedure IoT device procedures

procedure trust transfer start(tm)

Input : IoTTransferMessage tm

if valid(signaturetm:SP1) then
parse, save and update: raURI,
updateURISP2, enrollURICA2,
fallbackURISP1, payload.signatureSP2

reset

end

end procedure

procedure trust transfer continue()

if update before enrollment then
check for updates(updateURISP2)

end

if use RA then

prepare evidence
perform RA using raURI

end

if enrollment(enrollURICA2) is successful then
if valid(payload.signatureSP2) then

spURI ← updateURISP2

prepare ConfirmationMessage cm:
inner signcm ← signfactory key(IoT ID)
cm ← signnew op key

(spURI, inner signcm)
send(SP2, cm)
resume normal operations

end

else
abort, rollback pointers contact SP1 using
fallbackURISP1

end

end procedure

- The earliest and the latest switch-over time for
each involved device.

- Firmware code and/or service description(s) of
the software that the IoT device is running. There are
several possible alternatives, which are affected by if
SP2 is to continue using the same software that is
already available on the devices, and to what degree
the source code of the components is shared. We pro-
pose the state of the device software is shared through
sharing references to the relevant SUIT manifests.

- Optionally, if remote attestation is to be per-
formed, SP1 needs to share the information needed
for a verifier to evaluate the response from the device
being attested.

The mandatory information represented as a
CBOR array is specified in CDDL as follows:

11
DRAFT

SP 1 SP 2 IoT
device

trust agreement

UpdateInfoList

CA 2
trust agreement

Factory certificates

CA 2 path
<JWT: URI>

SP 1
Server-

TransferMessage
Software updates

IoT-TransferMessage

RA
Remote attestation

SP 2
RA report

Software updates

Enrollment, using <EST-coaps> or <LICE>

Confirmation-
Message

Figure 5: AutoPKI, Operator change. Automated operations
in black, optional operations in gray

Listing 2: UpdateInfoList

UpdateInfoList = [* DeviceUpdateInfo]

DeviceUpdateInfo = (

factoryCertificate: TBSCertificate,

updateTimeNotBefore: Time,

updateTimeNotAfter: Time,

versionInfo: (suit-manifest-seq-number,

suit-reference-uri),

)

This update information, encoded as an array of
pairs, is signed by SP1 using JSON Web Signatures.
Described so far are the interactions up until the
UpdateInfoList-arrow in figure 5.

The designated SP2, in turn, needs to perform the
required actions with an operational CA of choice,
that will become responsible for new operational cer-
tificates, corresponding to the procedure that SP1
previously carried out together with CA1 before the

initial deployment. In short, given an existing trust
relationship between the parties, forward the factory
certificate list to the CA2, and get a CA-URI token
back. In addition to these administrative steps, the
SP2 configures an update server endpoint, and pre-
pares a ServerTransferMessage, following the format
given below.

Listing 3: ServerTransferMessage

TransferMessageList = [* (TransferMessageInfo,

Signature)

]

TransferMessageInfo = (

ResetTimeNotBefore: Time,

ResetTimeNotAfter: Time,

raURI: bstr / null,

updateURI: (bstr, bool),

enrollURI: bstr,

)

If remote attestation is used, the ServerTransfer-
Message contains the remote attestation URI. The
updateURI is set to the SP’s own update server, with
a flag to indicate if devices should contact the up-
date server before the enrollment. We assume the
same URI can also be used by the device to report
data, hence it will be used to update the main service
provider pointer after a successful transfer operation.
The CA2 path is set as the enrollURI. This payload
is signed, and the transfer info plus signature is in-
cluded in a list with items for each target IoT device.

8.4. Performing the service provider change

When SP1 has received the ServerTransferMes-
sage from SP2, it parses the set of claims, copies the
fields, and adds a fallback URI which is set to the
SP1 update server, into individual IoTTransferMes-
sages for each target IoT device. SP1 can, if needed,
perform a last remote software update to the tar-
get devices. The set of transfer message claims are
treated as the payload of COSE Sign1 objects, which
are signed, resulting in signed CBOR Web Tokens
sent to each target IoT device.

Listing 4: IoTTransferMessage

IoTTransferMessage = (

ResetTimeNotBefore: Time,

ResetTimeNotAfter: Time,

raURI: bstr / null,

updateURI: (bstr, bool),

enrollURI: bstr,

SP2_signature: bstr,

fallbackURI: bstr

)

12
DRAFT

After the IoT transfer message has been received
and validated, the individual IoT devices reset them-
selves back to a state agreed upon in the agreement
between SP1 and SP2, where the resulting state in-
cludes the updated information about the new server
endpoints to contact after reset.

Upon restarting, the device will optionally first
contact the remote attestation server, to participate
in a RA challenge response. Thereafter, depending
on the updateURI flag, it can contact the SP2 up-
date server. Thereafter the device does re-enrollment
with CA2 The device will receive a new operational
certificate, recognized by the relevant SP2 endpoints,
as well as additional needed truststore updates.

It should be noted that the device truststore after
the last SP1 operation must contain certificates capa-
ble of authenticating CA2. Additionally, if remote at-
testation is used, or the optional pre-enrollment SP2
updates are needed, the trust roots of the RA server
and the SP2 update server endpoint must be present
in the trust store. The least complex scenario is when
the SP2 endpoint can be authenticated by certificates
in the IoT truststore in its initial state. This is triv-
ially the case when the CA hierarchies correspond to
1c or 1d. Otherwise, there must be a truststore up-
date operation that is not rolled back by the SP1 reset
operation.

In the same way, as in the initial enrollment sit-
uation, the IoT device trusts the new CA, given the
device is capable of authenticating the server during
a secure session establishment.

If any of the steps permanently fails, such as a
remote attestation failure, or failure to authenticate
with the CA2 or the SP2 update server, the IoT de-
vice will use the fallback URI to once more contact
the SP1 update server. For completeness, SP1 might
now require the device to perform a new remote at-
testation, to verify its state after the interactions with
SP2.

To prevent impersonation attacks, our formal
modelling showed the necessity to conclude the trust
transfer with a commit phase, using a confirmation
message after the successful enrollment. Only at this
point the IoT device can validate the SP2 signature
contained in the transfer message, redirect the per-
manently stored local SP pointer from SP1 to SP2
and send a confirmation message to SP2. The confir-
mation message is constructed by the device by first
creating an inner signature, by signing the device id
using its factory key. Thereafter signing the SP2-URI

and the inner signature by its new operational key
for the SP2 domain. Instead of sending two separate
signatures, this double signature is sufficient as the
payload, by which the IoT device can demonstrate
both its identity and having performed a successful
enrollment.

8.5. Continued operations

After the new enrollment operations, the device
is fully reconfigured as part of the SP2 management
domain and will communicate with the SP2 servers
based on its new configuration.

8.6. Certificate revocation checking

In the proposed protocol the effort to check the
revocation status of IoT device certificates, both op-
erational and long-term factory certificates, is put
on the Internet servers. They can handle existing
relatively heavy-weight protocols such as OCSP or
CRLs. To extend revocation-checking capabilities to
constrained devices, more lightweight mechanisms are
needed, as proposed in [25].

9. AutoPKI: feasibility study

Based on the protocol design goals, to target re-
source constrained devices, it is critical to show that
the protocol overhead is sufficiently small to match
IoT device capabilities. In the following, we vali-
date the proposed building blocks in terms of messag-
ing, computational and memory overhead. Our tests
have been performed on the nRF52840-DK platform,
which is a relatively powerful but relevant target IoT
device with an Arm Cortex-M4, 802.15.4-radio and
256 kB RAM.

9.1. Messaging overhead

To demonstrate the feasibility of the protocol, and
the acceptable overhead for IoT devices we calculate
the sizes of involved messages and transactions.

As can be seen in table 1 the IoTTransferMessage
and the ConfirmationMessage, the protocol messages
specifically sent to and from the IoT devices, con-
stitute only a few hundred bytes. This is when us-
ing 256-bit keys resulting in 64-byte signatures, plus
CWT encapsulation. Since this is small compared
with the handshake and enrollment operations, net-
works and devices which are capable of handling the
related PKI operations will have no difficulties with
the added AutoPKI messages.

13
DRAFT

Table 1: Protocol message size in bytes

Message/Operation
CoAP size (B)

DTLS, X.509 EDHOC, C.509

Protocol specific

DeviceUpdateInfo > 400 > 230

Factory certificate > 320 > 150

IoTTransferMessage > 287 > 287

ConfirmationMessage > 90 > 90

Related operations

Handshake > 1700 > 575
Enrollment > 1170 > 550

Total size for an IoT device > 3247 > 1502

9.2. Computational overhead

With the exception of the remote attestation op-
erations, which are highly dependent on the type of
RA performed, the only added operations with sig-
nificant computational impact for the IoT devices are
the signature checks related to the IoT transfer mes-
sage, and the two signature generations needed for
the confirmation message. The signature checking of
the COSE Sign1 is the same type of operation that is
performed as part of an EDHOC handshake. On the
nRF52840 platform, one signature verification opera-
tion takes 21 ms, when the signature is done using the
commonly used P-256 curve. The time needed for one
signature generation is slightly less, 20 ms. This can
be compared with a full EDHOC handshake which
needs around 90 ms of active CPU time for the IoT
device when using the same ECC curve.

9.3. Memory overhead

The functionality needed for the authentication
operations is of the same type that is used for ED-
HOC and OSCORE. By reusing the crypto libraries,
no extra memory footprint will be taken into account
for crypto operations, and less than a kilobyte for the
transfer message and confirmation message handling.
Our implementations of required crypto functionality
used by both for OSCORE and EDHOC need approx-
imately 6 kB of ROM, plus 5 kB more of EDHOC
specific code, for the nRF52840 platform.

Solutions for remote attestation of IoT devices
have been successfully emulated on IoT devices as
limited as the old TmoteSky platform with 48 kB
ROM, 10 kB of RAM and access to 1MB of flash
[26], and could therefore coexist with the required
PKI components on more capable devices such as
nRF52840.

9.4. Non-functional requirement compliance

The functional requirements are assessed below in
10. Here we focus on evaluating compliance with the
non-functional requirements.

NFR1: Automatization. The feasibility analysis il-
lustrates that besides the initial trust agreements and
SLA establishments, all other operations can be fully
automated. This is a key requirement to enable large-
scale IoT deployments with PKI support, through the
reduction of the PKI costs per device.

Currently, the pricing models for CA services are
complex and dependent on a long range of customer
requirements. The requirements can be both secu-
rity guarantees, such as requirements on dedicated
hardware security modules (HSM) and organizational
constraints, such as which of the organizational con-
structs depicted in figure 1 which need to be sup-
ported2 .

Specifically for the cost of individual certificates,
for the few CA providers which share any certificate
pricing information online, the lowest per certificate
cost found is starting from 7.95 USD per year, as
of April 2022 [27]. This price range is infeasible for
large-scale IoT deployments.

The current situation illustrates the need for con-
tinued development towards standards, increased au-
tomatization, and reduced costs per device.

NFR2: Resource efficiency. All the needed building
blocks have been demonstrated in versions suitable
for modern constrained IoT devices. Since the trans-
fer functionality is vital but rarely used, it is crucial
to reuse already existing crypto functionality on the
device, resulting in a minimal added overhead.

NFR3: Standard compliance. All security critical
components are contained within existing or proposed
standards. The combination of secure upgrades and
remote attestation is still an area where only initial
standardisation solutions have been proposed. The
modular approach proposed for AutoPKI makes it
relatively easy to upgrade parts of the protocol to in-
corporate for example new remote attestation mech-
anisms, or new crypto algorithms to be used for au-
thentication or encryption services.

2Nexus company policies

14
DRAFT

10. AutoPKI: Security Assessment

The security assessment of the protocol builds
upon the derivations done in the SIGMA paper [28].
A correctly constructed protocol will keep the secu-
rity properties offered by the individual components,
and hence be capable of offering the intended security
services as long as the components keep their security
guarantees.

We model and formally prove two statements
which together cover the requirements FR1 and FR2.
To explain the formal verification of the protocol se-
curity properties, we first briefly introduce the mod-
elling tool, Tamarin. We then explain the modelling,
discuss the results and reason about the assessment
of the remaining requirements.

10.1. Introduction to Tamarin Prover

The Tamarin prover is an open-source formal ver-
ification modelling tool, designed specifically to aid
the verification of communication protocols.3 The
tool operates in the symbolic model, which means
that protocol variables are not instantiated with con-
crete values. Instead, it is the relationship between
variables which is evaluated. For example, it is
not possible to read out any actual value of a fresh
pseudo-random variable, but one knows that it can-
not be derived from any other variable. Facts about
the state of the world are modelled as a multi-set of
logic predicates. Actions, both in the protocol and by
a potential attacker are modelled as a set of transition
rules for this multi-set of facts. The security proper-
ties are modelled as first-order logic formulas. The
tool is able to reason about an unbounded number
of protocol instances running in parallel, only lim-
ited by memory and compute power. A verification
run might not terminate, but if it does it results in
a 100%-certainty proof that the stated security prop-
erties are verified. The details of the tool-generated
proof are barely human-readable and not interesting
on their own, the value lies in the correspondence be-
tween the high-level abstract symbolic model and the
concrete protocol being modelled.

10.2. Modelling choices

The Tamarin prover by default has a Dolev-Yao
adversary model, introduced in section 5. In short,
an adversary has full control of the network and can

3Available online at https://tamarin-prover.github.io/

listen, record, block, delay, and modify all messages.
On the other hand, the adversary is in general not
capable to break cryptographic functions without the
corresponding keys.

In addition, we extend the capabilities of the ad-
versary with the capacity to learn SP1 private keys.
This allows us to model SP1 colluding with the adver-
sary. Certificate Authorities are modelled as entities
with an identity, the corresponding role ’CA’, and the
control of a private long-term key, ’ltk CA’. Addition-
ally, a CA can be a ’Root CA’ which provides factory
certificates for IoT devices, and an ’operational CA’
that controls one or multiple URI.

Certificates are modelled as a public key, signed
with a private CA key.

We assume the CAs’ public keys are safely known
by all involved SPs, i.e. there is no risk for the SPs
that the CA public key will be spoofed, manipulated
or replaced with a key controlled by the attacker or
otherwise compromised. We do not assume that an
IoT device enjoys the same privilege, and we explic-
itly model how and where a device learns the public
keys of the CAs that it trusts.

To limit the search space for the prover and ease
the proof generation, SP1 and SP2 are modelled as
separate roles, with only one instance of each role
active in the protocol. We claim this is done without
loss of generality, as SP1 can freely collude with the
adversary in our model, so adding more instances of
SPs would not give any additional capabilities to the
adversary, nor enable new attacks.

Similarly, we only allow only one instance of CA
to provide factory certificates to the IoT devices. On
the other hand, SP1 can own an unbounded number
of devices, and an unbounded number of Transfers
can happen in parallel.

An IoT device is modelled as an entity with a fixed
ID and the ’Device’ role, and initially nothing else;
the provisioning of the factory certificate is explicitly
part of the model.

Since we model the CAs directly with a pub-
lic/private key pair, and not certificates for them-
selves, we do not model certificate chains with inter-
mediate CAs. In other words, each CA acts as its
own trust root. However, as we mentioned earlier, a
CA is allowed to act as both a root/long-time CA and
as an operational CA at the same time, which allows
the tool to explore all possible combinations with one,
two, or three different trust roots for a given instance
of transfer.

15
DRAFT

Through this setup, the most challenging case
(seen in Fig. 1a), can be modelled, and slight sim-
plifications of cases (b), (c) and (d) can be modelled
with the certificate chains collapsed. Assuming that
the certificate chain validation mechanisms work as
intended for the involved parties and do not intro-
duce new vulnerabilities, the properties proven in our
model hold in any possible configuration of CAs.

The enrollment process is modelled through one
single rule, even though in practice it consists of sev-
eral message exchanges. This represents an unmod-
ified standard protocol, which is assumed to either
run to completion or be fully aborted.

Communications with the IoT device are sent
through the adversary-controlled network, as well as
communications involving SP1 since it can collude
with the adversary. On the other hand, communi-
cations between SP2 and its CA are assumed to go
through a secure channel (e.g. protected with TLS)
and are not sent through the adversary-controlled
network in our model.

10.3. Tamarin Results and requirement assessment

In this subsection, we present the properties
we have formulated based on the model, that the
Tamarin prover has verified to hold true. We then
map them back to our initially formulated security
properties.

Listing 5: The two Tamarin lemmas we have proved in the
model described above

lemma Secrecy:

"All data #i.

Secret(data) @ i

==> not (Ex #j. K(data) @ j)"

lemma Authenticity:

"All SP2 ID data #i.

Commit(SP2,ID,data) @ i ==>

(Ex #j. Running(ID,SP2,data) @ j)"

The first lemma, ’Secrecy’, means that any data
tagged as ’Secret’ during an execution of the proto-
col is indeed unknown to the adversary. Or more
formally, if data is tagged secret at a timepoint i,
then there does not exist any timepoint j when the
adversary knows the data.

The second lemma, ’Authenticity’, means that if
SP2 can ’Commit’ to a transfer with the device ID, ID
was indeed ’Running’ a transfer, and they both agree
on the relevant data exchanged during the transfer.

In other words, there is guaranteed to be a correspon-
dence between runs of the protocol executed by SP2
and runs executed by the Device, SP2 cannot ’Com-
mit’ to a transfer while being tricked by an attacker.

The ’Secret’, ’Running’, and ’Commit’ tags have
been added to the relevant rules in our model to en-
sure the desired security guarantees:

• the private key of the new operational certifi-
cate used in the confirm message received by
SP2 is tagged ’Secret’

• this certificate is also included in the data that
SP2 ’Commits’ to.

• the corresponding ’Running’ tag is added by the
IoT device after a successful enrollment, with
the new certificate it just obtained as the data.

An interesting point to note is that, during the
proving process, the Tamarin prover initially found
an attack with the initial protocol design. Seeing
this attack, understanding and patching the corre-
sponding vulnerability, helped us refine our design
and specify the precise content of the signature sent
by the device in the final confirmation message.

The two lemmas are now automatically provable
by Tamarin built-in solver, using the default heuris-
tic, and are guaranteed to hold in any possible exe-
cution of the transfer protocol in our model.

Interpretation. Altogether, these two lemmas ensure
that, if the transfer protocol concludes properly from
the point of view of SP2, and it receives a confirma-
tion message apparently from the IoT device with ID,
SP2 is guaranteed that ID was properly transferred
and it now has enrolled for an operational certificate
that SP2 can trust.

Comparing the Tamarin lemmas to the require-
ments defined in section 6, our formal model cannot
by itself guarantee all the desired properties, but it
gives strong evidence that the protocol is sound in
principles. Let us study the different requirements
individually:

FR1: Integrity protection. The content of the trans-
fer message received by the device is part of the data
in the ’Commit’/’Running’ tags that the IoT device
and SP2 agree upon, and so FR1 is guaranteed in our
model.

16
DRAFT

FR2: Man-in-the-middle resistance. Similarly, our
’Authenticity’ lemma with the associated ’Com-
mit’/’Running’ tags in the protocol rules ensures that
any confirmation message received by SP2 was indeed
sent by the transferred device, excluding any possi-
bility of tampering by a man-in-the-middle attacker.
So FR2 is guaranteed in our model.

FR3: Forward security. Our model guarantees: (a)
from the point of view of SP2, that the device enrolled
to, and now trusts, the actual CA2 that issues certifi-
cates for SP2 (’Authenticity’ lemma); (b) the secrecy
of the private key of the new operational certificate
that the device enrolled at CA2, both from the point
of view of the device and the point of view of SP2
(’Secrecy’ lemma). However, to fully guarantee FR3,
SP2 also needs a proof that the device is honest and
does not contain, for instance, a backdoor controlled
by SP1, hence the importance of the software update
and remote attestation process highlighted in section
8.3. With this additional assumption, SP2 and the
device can trust each other and are guaranteed to
have a secure access to each other public key through
CA2, and FR3 can be guaranteed.

FR4: Backward security. This property relies mostly
on SP1 doing its due diligence and erasing all sensitive
data from the devices before initiating the transfer
proper (while SP1 still has absolute control over the
devices) and not so much on the transfer protocol
itself. Once again, it highlights the importance of
the software update phase that takes place before the
transfer protocol itself.

10.4. Further considerations

While the solutions proposed in this paper fills
an important gap in terms of security mechanisms
for IoT, there are open issues, such as secure time
sources and coordination with link-level security so-
lutions, which remain to be fully standardised.

An observation about reachability: In the proce-
dure described here the responsibility to initiate con-
tact, specifically after the factory reset, lies with the
IoT devices. For many deployments, this is the only
available option, as networks with NAT can cause de-
vices to be unreachable unless the connection is initi-
ated from within the network. While IPv6 is increas-
ing in usage, and could in theory offer all devices glob-
ally accessible addresses, there are also security rea-
sons to hide resource-constrained devices from being

easily found and attacked, for instance taken down
through DOS attacks.

11. Conclusion

When IoT deployments become more common
and grow in size, issues of long-time maintenance and
the scalability of the security services become critical.
Making use of proposed and available PKI solutions
suitable for IoT we propose a protocol for the transfer
of control of IoT deployments, through the transfer
of trust between one operational domain to another,
with minimal manual overhead. The solution ensures
the possibility of long-time support solutions for IoT
deployments, and prevents vendor lock-in. We show
that given the integrity of the secure building blocks,
the protocol maintains the desired security proper-
ties.

Acknowledgment

This research is partially funded by the Swedish
SSF Institute PhD grant and by the EU H2020
projects ARCADIAN-IoT (Grant ID. 101020259) and
CONCORDIA (Grant ID: 830927).

References

[1] R. Housley, W. Ford, T. Polk, and D. Solo, “Internet
X.509 Public Key Infrastructure Certificate and CRL Pro-
file,” Internet Requests for Comments, RFC Editor, RFC
2459, January 1999.

[2] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza,
“PKI4IoT: Towards public key infrastructure for the In-
ternet of Things,” Computers & Security, vol. 89, 2020.

[3] J. Höglund and S. Raza, “LICE: Lightweight certificate
enrollment for IoT using application layer security,” in
IEEE Conference on Communications and Network Se-
curity, CNS 2021, Tempe, AZ, USA, October 4-6, 2021.
IEEE, 2021.

[4] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral
diffie-hellman over cose (edhoc),” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-lake-edhoc-03, 12
2020.

[5] F. D. Schoorman, R. C. Mayer, and J. H. Davis, “An
integrative model of organizational trust: Past, present,
and future,” The Academy of Management Review,
vol. 32, no. 2, pp. 344–354, 2007. [Online]. Available:
http://www.jstor.org/stable/20159304

[6] M. S. N. Khan, S. Marchal, S. Buchegger, and N. Asokan,
“chownIoT: Enhancing IoT Privacy by Automated Han-
dling of Ownership Change,” in Privacy and Identity Man-
agement. Fairness, Accountability, and Transparency in
the Age of Big Data :, vol. 547, 2018, pp. 205–221.

17
DRAFT

[7] M. Gunnarsson and C. Gehrmann, “Secure ownership
transfer for the internet of things,” in Proceedings of the
6th International Conference on Information Systems Se-
curity and Privacy, S. Furnell, P. Mori, E. Weippl, and
O. Camp, Eds., vol. 1. SciTePress, 2020, pp. 33–44.

[8] M. Safkhani, S. Rostampour, Y. Bendavid, S. Sadeghi,
and N. Bagheri, “Improving rfid/iot-based generalized
ultra-lightweight mutual authentication protocols,” Jour-
nal of Information Security and Applications, vol. 67,
p. 103194, 2022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2214212622000758

[9] O. AbuAlghanam, M. Qatawneh, W. Almobaideen, and
M. Saadeh, “A new hierarchical architecture and proto-
col for key distribution in the context of iot-based smart
cities,” Journal of Information Security and Applications,
vol. 67, p. 103173, 2022.

[10] D. Dolev and A. Yao, “On the security of public key proto-
cols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198–208, 1983.

[11] C. Müller, A. M. Gutierrez, P. Fernandez, O. Mart́ın-Dı́az,
M. Resinas, and A. Ruiz-Cortés, “Automated validation of
compensable slas,” IEEE Transactions on Services Com-
puting, vol. 14, no. 5, pp. 1306–1319, 2021.

[12] R. B. Uriarte, R. de Nicola, and K. Kritikos, “Towards
Distributed SLA Management with Smart Contracts and
Blockchain,” in 2018 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
2018, pp. 266–271.

[13] A. Alzubaidi, K. Mitra, and E. Solaiman, “Smart contract
design considerations for sla compliance assessment in the
context of iot,” in 2021 IEEE International Conference on
Smart Internet of Things (SmartIoT), 2021, pp. 74–81.

[14] A. Beniiche, “A study of blockchain oracles,” ArXiv, vol.
abs/2004.07140, 2020.

[15] “IEEE Standard for Local and Metropolitan Area Net-
works - Secure Device Identity,” IEEE Std 802.1AR-2018,
pp. 1–73, 2018.

[16] M. Nystrom and B. Kaliski, “PKCS #10: Certification
Request Syntax Specification Version 1.7,” Internet Re-
quests for Comments, RFC Editor, RFC 2986, November
2000.

[17] J. P. Mattsson, G. Selander, S. Raza, J. Höglund, and
M. Furuhed, “CBOR Encoded X.509 Certificates (C509
Certificates),” Working Draft, IETF Secretariat, Internet-
Draft draft-ietf-cose-cbor-encoded-cert-03, January 2022.

[18] J. Schaad, “CBOR Object Signing and Encryption
(COSE): Header parameters for carrying and referenc-
ing X.509 certificates,” Working Draft, IETF Secretariat,
Internet-Draft draft-ietf-cose-x509-08, December 2020.

[19] H. Tschofenig and T. Fossati, “Transport layer security
(tls) / datagram transport layer security (dtls) profiles for
the internet of things,” Internet Requests for Comments,
RFC Editor, RFC 7925, July 2016.

[20] M. Pritikin, M. Richardson, T. Eckert, M. Behringer, and
K. Watsen, “Bootstrapping remote secure key infrastruc-
ture (brski),” Internet Requests for Comments, RFC Ed-
itor, RFC 8995, May 2021.

[21] P. van der Stok, P. Kampanakis, M. Richardson, and
S. Raza, “EST-coaps: Enrollment over Secure Transport
with the Secure Constrained Application Protocol,” In-
ternet Requests for Comments, RFC Editor, RFC 9148,
April 2022.

[22] B. Moran, H. Tschofenig, D. Brown, and M. Meriac, “A
Firmware Update Architecture for Internet of Things,”
Internet Requests for Comments, RFC Editor, RFC 9019,
April 2021.

[23] S. F. J. J. Ankerg̊ard, E. Dushku, and N. Dragoni, “State-
of-the-Art Software-Based Remote Attestation: Opportu-
nities and Open Issues for Internet of Things,” Sensors,
vol. 21, no. 5, 2021.

[24] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and
W. Pan, “Remote attestation procedures architecture,”
Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-rats-architecture-15, February 2022.

[25] J. Höglund, M. Furuhed, and S. Raza, “Lightweight cer-
tificate revocation for low-power iot with end-to-end secu-
rity,” Journal of Information Security and Applications,
vol. 73, 2023.

[26] E. Dushku, M. M. Rabbani, M. Conti, L. V. Mancini, and
S. Ranise, “SARA: Secure Asynchronous Remote Attesta-
tion for IoT Systems,” IEEE Transactions on Information
Forensics and Security, vol. 15, 2020.

[27] ComodoSSLstore, “Comodo positive ssl certificate,”
https://web.archive.org/web/20220420135513/https:
//comodosslstore.com/positivessl.aspx, April 2022.

[28] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ Approach
to Authenticated Diffie-Hellman and Its Use in the IKE
Protocols,” in Advances in Cryptology - CRYPTO 2003,
D. Boneh, Ed. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 400–425.

18
DRAFT

Paper V

BLEND: Efficient and blended IoT data storage and
communication with application layer security

Joel Höglund, Shahid Raza
RISE Research Institutes of Sweden

Isafjordsgatan 22, 16440 Kista, Stockholm
{joel.hoglund, shahid.raza}@ri.se

Abstract—Many IoT use cases demand both secure stor-
age and secure communication. Resource-constrained devices
cannot afford having one set of crypto protocols for storage
and another for communication. Lightweight application layer
security standards are being developed for IoT communication.
Extending these protocols for secure storage can significantly
reduce communication latency and local processing.

We present BLEND, combining secure storage and communi-
cation by storing IoT data as pre-computed encrypted network
packets. Unlike local methods, BLEND not only eliminates
separate crypto for secure storage needs, but also eliminates a
need for real-time crypto operations, reducing the communication
latency significantly. Our evaluation shows that compared with a
local solution, BLEND reduces send latency from 630 μs to 110
μs per packet. BLEND enables PKI based key management while
being sufficiently lightweight for IoT. BLEND doesn’t need mod-
ifications to communication standards used when extended for
secure storage, and can therefore preserve underlying protocols’
security guarantees.

Index Terms—Secure storage, communication security, appli-
cation layer security, OSCORE, EDHOC, IoT

I. INTRODUCTION

IoT is being deployed in extremely heterogeneous and
wild scenarios such as agriculture monitoring, battlefields,
remote surveillance, power-line monitoring, flood monitoring,
and telemedicine. Most of these deployments require data
confidentiality and/or integrity while at rest as well as in
transit. While traditional Datagram TLS (DTLS) [1] has been
extended to IoT, it is still too heavy for many IoT scenarios
and lack full end-to-end security across different transport
layer technologies. New Application layer protocols, namely
OSCORE [2] and EDHOC [3], are specifically designed for
resource-constrained IoT and offer full end-to-end security.

In contrast to the active standardization work on enabling
secure communication in IoT, the secure storage solutions for
IoT have attracted less attention. While a custom-made local
secure storage protocol can be developed, it would require new
proposals on, for example, key management, choosing encryp-
tion and secure hash functions, initialization vectors, etc. Less
well tested new solutions are likely to be less secure, and will
require additional implementation efforts ultimately requiring
more processing and storage resources. Most importantly, a
separate secure storage solution will require additional crypto
operations when an IoT data is sent to a remote host, which

Application

CoAP, OSCORE

UDP

IPv6

6LoWPAN

802.15.4

Local
secure
data

decrypt

encrypt

H encrypted

Application

CoAP, OSCORE

UDP

IPv6

6LoWPAN

802.15.4

H encrypted

BLEND
secure
data

Fig. 1: Retrieving encrypted IoT data and securely sharing it
with a remote host, with (right) an without (left) BLEND

will increase the real-time latency. As shown in Figure 1 (left),
before sending a securely storage data, separate secure storage
and secure communication solutions will require that the data
must be first decrypted using one set of security protocol
and encrypted again with another set of protocols. Such a
solution has significant performance overhead and is infeasible
for resource-constrained IoT devices.

In this paper, we propose BLEND that exploits novel
application layer security protocols and provide combined
secure storage and communication without compromising end-
to-end security. BLEND does not require separate protection
for storage and for communication, and the stored secure
data can be shared with a remote host without any crypto
operations during the transmission phase, ultimately reducing
the real-time latency significantly; this is depicted in Figure 1
(right). BLEND is particularly advantageous in use cases
having hard latency requirements; for example, when a drone
cost-effectively collects IoT data from vast smart agriculture
deployments or from remote power lines.

The main challenge in providing a combined secure storage
and communication is to enable a solution that incurs minimal
overhead for IoT devices, keep well-tested security properties
intact, and does not compromise standard compliance and
interoperability. This can be achieved by extending the use
of the newly standardised OSCORE and EDHOC protocols
to secure data storage. The core contributions of the paper
are as follows: we (i) extend standard based application layer
security mechanisms and enable combined secure storage
and secure communication; (ii) provide an implementation of978-1-6654-9952-1/22/$31.00 ©2022 IEEE

253

2022 IEEE International Conference on Cyber Security and Resilience (CSR)

BLEND for resource constrained devices using Contiki NG;
and (iii) evaluate BLEND to show its suitability for IoT.

The rest of this paper is organized as follows: related
work and relevant background are presented in section II and
III, respectively; we present a treat model in Section IV;
elaborate our design in section V; provide implementation
details in section VI and evaluation in VII; highlight security
considerations in Section VIII; and conclude the paper in
section IX.

II. RELATED WORK

A. Secure communication

The area of secure communication for resource constrained
devices has seen a rapid development the last decade, with the
introduction of protocols targeting IoT. Early standards such as
IPSec has largely been replaced with DTLS, Datagram Trans-
port Layer Security. Still the protocol overhead is relatively
large. Especially for low power radio networks where network
radio packets are as small as 127 bytes, and fragmentation
can cause delays and security vulnerabilities. This is limiting
the usable payload for application layer sensor data down to
a maximum of 51 bytes per packet, unless network specific
optimizations such as 6lowPAN header compression is used,
which limits the general applicability [4]–[6]. Recently new
application layer protocols for secure communication have
been devised which can reduce the per packet overhead, while
supporting crypto algorithms suitable for constrained devices.
OSCORE together with with EDHOC for key establishment
have the potential to be used for PKI solutions with sufficiently
low overhead for IoT. While DTLS has been shown to be
feasible for PKI solutions for IoT the cost of key establishment
when using standard X509 certificates is high [7], [8].

B. Secure storage

The area of secure storage has seen much less standardisa-
tion efforts. Instead several overlapping fields are contributing
to the area. Blockchain based research efforts, including [9],
[10] design solutions for custom deployments, but mainly ad-
dress computationally capable end devices such as cellphones
or routers, and rely on custom server infrastructure.

Another related area is research on Trusted Execution En-
vironments, TEE, such as ARM’s TrustZone. TrustZone func-
tionality has been used as a building block to construct secure
storage for Android based devices [11]. An important area
for TEE is to enable the creation of secure key storage [12]–
[14]. With respect to the more constrained IoT devices the
TEE related efforts are complementary to our work on secure
storage.

Besides the problem of secure key storage, many of the
relatively lightweight cryptographic solutions used in commu-
nication protocols can be applied to any data to create a secure
sensor data storage. As long as the secure storage only serves
local encryption purposes, the need for standardisation is less
emphasized.

There are two previous suggestions on how to combine
secure communication with secure storage, FUSION and

FDTLS [15], [16]. The proposed designs are based on IPsec
and DTLS, where promising results in terms of reduced
overhead when packets are being sent are shown. An important
finding is the need to optimize the storage operations with
respect to the memory hardware constraints, such as to write
full memory pages to reduce flash handling overhead.

The main shortcomings of these lower layer security ap-
proaches are the following: The solutions rely on PSK, pre-
shared keys. This is an outdated mode of key management,
with no support for automated key management, including
enrollment or revocation. Both IPsec and the DTLS version 1.2
used for the evaluations have large headers, greatly reducing
the space available for sensor data when used over low power
radio networks. To partly alleviate this, both designs rely on
using 6lowPAN header compression, which ties the usage
completely to networks where this is available. To allow new
connections the protocol is side stepped in terms of removing
the randomness used when generating session keys, without
analyzing the security implications of this procedure, plus
other minor protocol breaking tweaks. Additionally, by relying
directly on IPsec or DTLS none of the conveniences offered
by CoAP are available for any of the involved parties.

The conclusion is that while several works address some of
the issues of secure storage of data for IoT, the existing pro-
posals for coalesced storage and communication have serious
shortcomings. We address these shortcomings with a design
making use of application layer security.

III. NECESSARY BACKGROUND

Object Security for Constrained RESTful Environments is
an application-layer protocol specifically designed for IoT
security [2]. It protects CoAP messages and builds upon COSE
[17] and CBOR functionality for encryption and encoding
[18]. The protocol offers replay protection using sequence
numbers tied to the security context. Since UDP packets might
arrive out of order, the protocol uses a replay windows, such
that the receiver keeps a range of currently accepted numbers.

Ephemeral Diffie-Hellman Over COSE (EDHOC) is a
proposed key exchange protocol primarily design for OS-
CORE [3], and shares the usage of COSE and CBOR encoding
with OSCORE. It can be used with standard X.509 certificates,
or with more compact certificate formats. The security func-
tionality of EDHOC is based on the SIGMA schema, from
which it follows that as long as the included components keep
their security guarantees, the resulting protocol will provide
the desired security services [19].

A successful EDHOC security context establishment will
result in the parties agreeing on a Master Secret, a Master
Salt, client and recipient IDs, and the crypto algorithms to use.
With this information in place, Sender Key, Recipient Key and
Common IV can be derived and saved. Once a security context
is established, an endpoint is free to act both as server and
client, using the same security context for both purposes [2].

IV. THREAT MODEL AND ASSUMPTIONS

We consider scenarios where an attacker can, with some
probability, get physical access to the node and probe the

254

device permanent flash memory. We discuss both scenarios
where we assume that the non-permanent memory is sufficient
for key storage and scenarios where a (small) tamper protected
memory area exists, which can be used for key storage. For
communication, the Dolev-Yao threat model is applicable.
An attacker can eavesdrop any communication between the
involved entities, and also modify and re-send any message.
As a consequence protection for replay attacks are needed,
together with authentication and confidentiality services to
prevent unauthorized access to any secret content. To generate
new keys and perform secure key exchange the devices must
have access to a sufficiently strong random number generator.
We assume that the standards we use as building blocks are not
compromised, but can offer the claimed security guarantees
when used together with the recommended crypto algorithm
suits.

V. BLEND: DESIGN

A. Requirements

The main requirement is to offer secure storage with low
latency for data sending, while keeping the overall overhead
low. To preserve security guarantees offered by OSCORE, as
few deviations from the protocol usage as possible should
be done. Preferably the receiving end of the communication
should not need to take any additional steps outside of the
regular protocol to receive and decrypt previously stored
sensor data. In order to preserve the protocol guarantees, the
initial key establishment needs to happen before packets can
be precomputed and stored.

B. System building blocks

An EDHOC implementation is needed for key establish-
ment, but requires only standard functionality in terms of key
export interfaces to create and retrieve the shared secrets used
for the security context.

The OSCORE implementation needs to be augmented with
handlers to enable BLEND to precompute packets and send
them unmodified at a later point in time. Practically this means
allowing retrieval of the byte buffer representing the serialized
OSCORE packet and ensuring there are interfaces to control
the sequence numbers.

A flash storage abstraction is useful to hide hardware
specific details and offer a higher level API. We propose a
simple file system like API which allows reading, writing and
appending data to files, which are being written out to flash.

C. SecureStorage lifecycle and message flow

The figure 2 illustrates the main events relevant to secure
storage operations. After the key establishment both parties
have established a secure context, which allows them to act
as both clients and servers.

The sensor can thereafter be deployed, and start sensing.
Depending on the data generation rate and storage policy, a
number of sensor readings might be compiled as the payload
for one CoAP packet. The packet is encrypted as a ready to
send OSCORE packet and stored onto flash.

Sensor device Data mule

Key establishment

Deployment

Sensor event
Packet encryption and storage

Sensor event
Packet encryption and storage

Trigger message

Precomputed packages

Fig. 2: BLEND overview. An initial key establishment is done
before deployment, can be redone later given EDHOC support.
Sensor data is encapsulated into precomputed packets, and
securely stored until a connection with a data mule, or any
other secure endpoint, is available

When the communication link is ready, for instance in the
form of a data mule, a trigger command is sent. The trigger
message is a CoAP request, protected with the same OSCORE
security context as has been previously established through
EDHOC. Hence the correct decoding of the trigger message
serves both to authenticate the data mule, and to authorize it
for accessing the sensor data. The command will cause the
sensor device to start sending the stored packages. In sending
the stored packages, the sensor device acts as a client. This
allows the device to control the sequence numbers included
in the packets, reflecting the sequence numbers of the stored
packets. To prevent an attacker from stopping a data transfer
simply by blocking the trigger message, we require the device
to reply with a short no data message in case there is no sensor
data to send.

D. Storage overhead trade-offs
The amount of data that the sensor device needs to store

locally depends on both the sensor data generation rate and
the frequency of data collection from the outside. For sensor
devices deployed in low power radio networks, the least
amount of overhead is achieved if payloads corresponding to
full 802.15.4 frame sized packets are precomputed and stored.
If the sensor data generation rate is sufficiently small, the
node would need to temporarily store unencrypted sensor data
until the amount corresponding to a full payload is gathered.
If no temporary plaintext storage is considered acceptable,
the device must create encrypted packets for each individual
sensor reading.

E. Relation between the layers
An detailed illustration of the relation between the layers is

shown in figure 3. In the following we explain the data needed
to be included and processed.

F. CoAP packet creation
While the CoAP protocol is versatile, with a range of packet

options, we are here interested in a meaningful minimal subset

255

C URI 'FF' Original payload

OCH MSG-ID T O-OPT PIV KID Encrypted CoAP MIC

Source
Port Dest Port Length CS OSCORE headers OSCORE payload

Plaintext for encryption

Original payloadSensor readings

CoAP
data

OSCORE

UDP

Storage

Re-calculate Load

Store
Store once, as indices

OSCORE plaintext

MSG-ID TPIV KID

OSCORE
input

COSE data

AAD

OSCORE
data

Encryption using AAD

Fig. 3: The relation between the layers when using BLEND

TABLE I: Plaintext data needed to prepare the CoAP packets
used in BLEND

Type Size, byte Example
Version & type 1 ’40’ ver.1, confirmable
Code 1 ’02’ POST
Message ID 2 ’4A 84’ <any id>
Token 1 ’84’
URI path & len 1+path len ’b0’
Payload marker 1 ’FF’
Payload 6–56 <binary data>
To be encrypted ≥ 3+payload len

TABLE II: Data contained in the OSCORE packets

Type Size, byte Example
Version & type 1 ’40’ ver.1, confirmable
Code 1 ’02’ POST
Message ID 2 ’4A 84’ from CoAP
Token 1 ’84’ from CoAP
OSCORE flag 2 ’93 09’
Partial IV 1– ’13’ = sequence no
Key ID 1 ’42’ = sender id
Payload marker 1 ’FF’
Encrypted payload 9–59 <encrypted CoAP>
MIC 8
Packet length ≥ 21+original sensor data payload len

needed to precompute sensor data packets. The table I shows
the minimal plaintext data needed to create a CoAP packet,
ready to be encrypted for secure storage. In italics are the
fields that will be moved to the OSCORE packet. In bold are
the fields will be protected through encryption. An observation
is that the length of the destination URI directly adds to the
packet overhead, but unless otherwise required the empty root
path can be used as a valid destination URI.

TABLE III: Previous state-of-art, data contained in a DTLS
record packet

Type Size, byte Example
Content type 1 ’17’ = application data
Version 2 ’FEFD’ = DTLS 1.2
Epoch 2 ’0001’
Sequence number 6 ’0000 0000 0001’
Length 2
Initialization vector 8
Encrypted payload 6–51 <encrypted raw sensor data>
MIC 8
Packet length ≥ 29+original sensor data payload len

G. OSCORE packet creation

Given an existing security context and the CoAP packet
information, BLEND can encrypt the CoAP payload together
with the sensitive header fields, and calculate the correct
OSCORE headers. The missing dynamic information needed
is the sender sequence number. The sequence number is used
as the basis for the partial initialization vector, or Partial IV
in COSE terms. The sender ID is used as key ID. (’PIV’
and ’KID’ in figure 3.) These two items, together with static
COSE information on the algorithm used, are used to form
the additional authenticated data, AAD, used in encryption.
The two items are also used for calculating a nonce used in
encryption, and finally they are included in plaintext in the
OSCORE packet header.

The table II shows the data present in the resulting OSCORE
header. Starting from the original sensor data, the minimal
total overhead is 21 bytes. For sequence numbers in the range
255–65535 an extra byte is needed, etc. This flexible sizing is
in contrast to the older DTLS standard (shown in table III),
where a fixed field of 6 bytes is allocated regardless of the
currently needed size.

256

H. Storage of precomputed packets

For systems with fast flash memory operations, or where
energy is of less concern, the prepared OSCORE packet
can be saved directly. Where flash operations are slow or
energy efficiency is paramount, the OSCORE packet header
information can be stored once for a whole series of sensor
data packets. Since all the dynamic fields; the message ID,
token and sequence number can be assigned in a predictable
increasing manner, storing and later retrieving the starting
points for the first packet header is sufficient to recalculate
the following packet headers. It is this optimized procedure
which is shown in figure 3.

I. UPD alternative

Also UPD headers could be precomputed, and the entire
UDP databuffer could be stored for minimal processing at
the time of sending. Precomputing UDP packets requires the
source and destination ports to be known beforehand. A more
important drawback is the increased storage overhead, since
the UDP headers add another 8 bytes to each precomputed
packet, which needs extra time for storage and retrieval.

J. Key management

BLEND relies on devices being able to establish new
security contexts upon need. To create a new context with the
same endpoint, OSCORE allows existing master secret data
to be reused, making the context derivation computationally
cheap. This can be used to keep the context sequence number
bounded by a fixed length. For key establishment we propose
EDHOC to be used. EDHOC offers relatively low overhead
while supporting PKI solutions. Low overhead is achieved
through using certificate reference based key establishment.
This requires relevant certificates to have been securely dis-
tributed at an earlier point in time. Certificate distribution is
out of scope for this work, but in contrast to solutions based
on shared secrets, certificates are meant to be openly shared
and could be distributed from any trusted endpoint.

1) Planned secure context updates: If the data collection
endpoint is replaced, the sensor device needs to establish a new
security context with the new endpoint. For a planned update,
a notice can be communicated ahead of time. Depending on
the deployment scenario, this might simply be a message
to initiate a full new key establishment, which allows the
sensor to immediately start using the new context for sensor
data storage. For extreme deployments with very limited
connectivity and data mules, it might be a notice send during
the last data collection round where the old data mule is active.
Unless the key establishment can be relayed at that time,
the sensor device has to temporarily resort to local storage
encryption until a new security context is in place.

2) Unplanned secure context losses: For cases when the
data connection endpoint loses the security context, or is lost
all together, the following round of data collection with a not
previously used endpoint requires re-keying. Any data that has
been stored locally using the old security context need to be
decrypted by the IoT device and encrypted again.

For IoT devices with access to tamper resistant nonvolatile
memory that can be used for key storage, they can store the
shared secret data established through the key exchange such
that they can recover the security context in case of temporal
power losses or restarts.

An IoT device without a secure permanent key storage
wants to minimize the storage of security sensitive data to
a minimum. Hence there is a risk of losing vital parts of
the security context, in case of power losses and unplanned
restarts. In the case of context losses the previous stored
precomputed sensor data packets become opaque to the device.
The stored data can still be sent to the endpoint which has
access to the security context and is able to decipher the
encrypted packets. Depending on the deployment, the device
might report its situation and request a new authentication
through a new key exchange before sending the packets from
the old security context. In this case the receiving endpoint
must keep both contexts in parallel. Alternatively, the setup
can be done to allow the IoT device to interpret an incoming
message it cannot decipher as the expected trigger message,
if it is recovering from a security context loss.

3) Proximity to endpoint: Since EDHOC offers true end-
to-end protection it can be used to establish a security context
with any reachable remote endpoint, even behind proxies.

K. Re-sending and multiple receivers
The usage of precomputed sensor data packets does not

affect resending that happens on lower layers. Lower layer
resending will depend on the deployment scenario and radio
configuration. As long as a packet has not been received by
the other end, the receive window used for the replay detection
by the recipient remains unchanged. If on the other hand data
has been received the same packet can no longer be resent,
as the encryption is affected by the sequence number. For
scenarios where either the same receiver wants the same data
item more than once, or where multiple receivers are interested
in the same data item, extensions of the keying schema must
be done. To handle multiple receivers there are proposals for
OSCORE group communication, which could be part of an
extended secure storage solution [20].

VI. IMPLEMENTATION

We have implemented BLEND in C as a module for
the Contiki NG embedded OS [21], that can be adapted
for other available operating systems such as Zephyr [22].
The BLEND implementation contains the needed OSCORE
libraries, including COSE and CBOR encoding and decoding.

For the basic crypto operations we have reused functionality
from the crypto libraries available in Contiki NG, which offers
partial crypto operation hardware acceleration for selected
target platforms.

a) Secure communication: The secure communication
part of BLEND is build using the OSCORE libraries available
in an experimental version of Contiki NG, plus our EDHOC
implementation for key establishment. To allow reusability
of the available code for confirmable CoAP transactions we
include a CoAP token in the packets.

257

Fig. 4: Storage size relative to the original sensor data size in
bytes, for different sensor payloads and storage options

b) Secure storage: The storage part is built on top of the
Coffee file system for Contiki, offering a file abstraction for
interacting with underlying flash memory. When the optimized
packet storage method is used, the dynamic header information
needed to recalculate the full headers is recorded at the start of
new files, followed by the encrypted part of the packets. The
specifics of flash memory block sizes and optimal amount of
data to write per file depends on target hardware.

c) Key management and crypto algorithms: We have im-
plemented EDHOC which is used to establish shared secrets,
and based on them derive security contexts. Both the EDHOC
and the OSCORE standards are flexible in terms of supporting
multiple crypto suits. Our implementation is focused on the
mandatory SHA-256 for HKDF, HMAC-based Extract-and-
Expand Key Derivation Function, and the most commonly
used symmetric crypto, AES-CCM-16-64-128. While AES-
CCM is a block cipher, it does not require padding of the
resulting ciphertext. As a result the length of ciphertext is
always the length of the plaintext, plus 8 byte MIC, message
integrity code.

VII. EVALUATION

We use a quantitative experimental research methodology
where we evaluate the impact of one particular variable while
keeping other parts of the system setup static, to correctly
attribute the performance variations. In the following we
present the relevant micro benchmarks illustrating the system
performance and overhead.

A. Experimental setup

For the hardware experiments we use Zolertia Firefly
nodes, a platform using TI CC2538 ARM Cortex M3 micro-
controllers [23]. The nodes are equipped with 32 KB RAM,
512 KB flash, a 2.4GHz 802.15.4 radio for communication
and support for hardware acceleration of crypto operations.

B. Storage overhead

The packet storage overhead for different sensor data pay-
loads is shown in figure 4. Storing a ready to send OSCORE
packet induces an overhead of 21 bytes, using the config-
uration presented in tables I and II. If instead a complete
UDP packet is stored, the per packet overhead is 29 bytes.

If only the starting points for dynamic header data counters
are stored once, the overhead quickly shrinks to close to 3
extra CoAP bytes, plus the 8 byte MIC. For our system tests
we use file append functionality for storing packets, such that
the storage cost of the 6 bytes needed for header recalculations
are amortized over 25 precomputed packets.

Depending on the initial sensor data size the resulting
storage overhead ranges from 20% for the 56 byte sensor data
packets using optimized storage, all the way up to close to
600% for 6 byte sensor data while storing full UDP packets.

In the following experiments the optimised version where
needed header data is stored once is used.

C. Latency to get data ready for sending

When the device gets a request to report recorded sensor
readings, if local security is used, it needs to read the data from
flash, decrypt it with the local key and prepare it for sending. If
BLEND is used, the operations needed are reading from flash
and, optionally, packet transaction allocation. The two cases
are illustrated in figure 1. The total time needed is shown in
figure 5a, for when hardware acceleration is available, and in
figure 5b without hardware acceleration.

With hardware acceleration BLEND performs around 0.5
ms faster compared with the local security solution. The
resulting remaining latency when retrieving a stored packet,
recalculating header information and allocating a CoAP trans-
action is is only between 65 μs and 110 μs.

Without hardware acceleration, with all cryptographic oper-
ations done in software, the latency savings are between 0.75
ms and 1.36 ms per packet compared with the local security
solution.

D. Total energy usage

Using the fine grained timer system in Contiki NG we mea-
sure the time spent for relevant system operations. This makes
it possible to calculate the consumption based on current and
voltage levels from the CC2538 hardware datasheets [23]. We
use the specified maximum peak current for writing, which
means we present the absolute upper bound of energy usage
for the flash operations.

The total energy usage is shown in figure 6a and 6b, with
and without the usage of crypto hardware acceleration. Using
the crypto hardware acceleration the differences are small.
Due to relatively slow storage write operations, also a small
increase in storage needs can offset crypto savings. Without
crypto hardware acceleration, BLEND saves energy for all
sensor data sizes.

The conclusion is that BLEND performs at least on par with
the local storage solution in terms of total energy usage, with
a clear advantage for all cases where the crypto operations
constitutes a larger proportion of the total work done.

E. Key establishment and comparison with DTLS

1) Key establishment: Using the reference based key es-
tablishment option in EDHOC we are able to perform a
key establishment using only 284 bytes of application layer

258

(a) with hardware acceleration (b) No hardware acceleration

Fig. 5: Latency for packet preparation, with local security and while using BLEND

(a) With hardware acceleration
(b) No hardware acceleration

Fig. 6: Total energy needed for sensor data operations, with local security while using BLEND

data. With DTLS 1.2 and the ECDHE-ECDSA cipher suit
corresponding operations use 1.65 kB. This is largely due to
lengthy ASN.1 encodings and the need to send full certificates
in the handshake. The numbers are based on IoT profiled
certificates of only 315 bytes for both parties in the exchange.

2) Packet encryption and overhead: The AES crypto used
for OSCORE corresponds to what is commonly used also for
DTLS 1.2 in IoT devices. This means the overhead from the
crypto operations are directly comparable. An obvious benefit
of switching to an OSCORE based solution is the reduced
packet overhead. Using the DTLS AES128-CCM8 cipher
produces the packet overhead figures given in table III, to be
compared with numbers for OSCORE in table II. An OSCORE
solution using CoAP saves eight bytes even compared with
a DTLS session without CoAP, used to transport raw UDP
data. If instead also DTLS is used to provide a CoAPs session,
encryption will be performed on the whole CoAP layer packet,
which reduces the maximum usable sensor data payload with
six more bytes, down to 45 bytes.

F. Memory requirements

The BLEND implementation requires 1.5 kB of ROM
and a little less than 0.5 kB of RAM. Figure 7 shows the
comparison with the related components in the configuration
used. Compared with the size of the total Contiki NG firmware
used for the evaluation of around 60 kB ROM and 13 kB of

Fig. 7: Memory usage by BLEND and related components

pre-allocated RAM, the BLEND only contributes to 2.5% of
the ROM and 3.8% of the RAM.

The numbers shown are when there is memory allocated for
two parallel security contexts. Each additional security context
adds 143 bytes of RAM.

VIII. SECURITY CONSIDERATIONS

When a protocol designed for securing communication is
reused to also protect data at rest, it is important to validate
that protocol assumptions are still applicable. This includes the
amount of data that can be protected. The OSCORE protocol
is designed to allow theoretical maximum sequence numbers

259

up to 240-1, but for actual implementations the number will
be lower. The implementation used in our evaluation allows
sequence numbers up to 4.3 billion. Using 48 byte sensor
data packets, to ensure no fragmentation, this corresponds
to covering more than 200 GB of data without resetting the
sequence counter. This is not a limiting factor for the resource
constrained IoT scenarios considered.

The EDHOC protocol relies heavily on the availability of a
secure random number generator. For devices with less strong
random generators there are proposals on how to incorporate
more random material to improve generator quality [24].

If the same master secret data is used to generate multiple
secure sessions, forward secrecy is no longer guaranteed [2]. If
the long-term secret is leaked, data from previous sessions risk
being exposed. This means the multiple session feature should
only be used when the risk that previous communication has
been eavesdropped is either neglectable, or if the old data no
longer is considered secret.

Our only proposed deviation from existing protocol compli-
ance is the suggestion that an IoT device that has lost its secure
session could be allowed to send its stored encrypted data
without performing mutual authentication and establishing a
new secure session. This could enable an attacker to trick
the device into sending data, but which the attacker will not
be able to decipher, as long as the protocol is not otherwise
compromised. To prevent the data from getting lost, the device
should keep the data until it has been properly acknowledged
through a new security context.

The concerns regarding secure key storage are applicable
for any local secure storage solution as well. The local storage
needs either a long time key stored in persistent memory, or
it needs a secure key management protocol of its own.

IX. CONCLUSION

We have shown that the new application layer security
standard, OSCORE, can be integrated with an IoT storage
system, which makes it possible to provide a secure data
storage service without compromising any communication
security properties or the standard compliance. Our solution,
BLEND drastically reduces the latency for sending stored IoT
data compared with a local secure storage solution. When
combined with EDHOC for performing secure key exchange
and establishing the needed security context, BLEND enables
a resource efficient way to achieve a complete secure storage
and communication solution for IoT.

ACKNOWLEDGMENT

This research is partially funded by the Swedish SSF
Institute PhD grant and partly by the EU H2020 ARCADIAN-
IoT (Grant ID. 101020259), the ITEA3 Smart, Attack-resistant
IoT Networks (Project ID: P123800021) and the H2020 CON-
CORDIA (Grant ID: 830927) projects.

REFERENCES

[1] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” Internet Requests for Comments, RFC Editor, RFC 6347,
January 2012.

[2] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object security
for constrained restful environments (oscore),” Internet Requests for
Comments, RFC Editor, RFC 8613, July 2019.

[3] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral diffie-hellman
over cose (edhoc),” Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-lake-edhoc-09, August 2021.

[4] J. Mattsson, F. Palombini, and M. Vucinic, “Comparison of coap security
protocols,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-
lwig-security-protocol-comparison-05, November 2020.

[5] J. Hui and P. Thubert, “Compression format for ipv6 datagrams over
ieee 802.15.4-based networks,” Internet Requests for Comments, RFC
Editor, RFC 6282, September 2011.

[6] C. Bormann, “6lowpan-ghc: Generic header compression for ipv6 over
low-power wireless personal area networks (6lowpans),” Internet Re-
quests for Comments, RFC Editor, RFC 7400, November 2014.

[7] Z. He, M. Furuhed, and S. Raza, “Indraj: Digital certificate enrollment
for battery-powered wireless devices,” in Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 117–127.

[8] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza, “Pki4iot: Towards
public key infrastructure for the internet of things,” Computers &
Security, p. 101658, 2019.

[9] L. Zhou, L. Wang, Y. Sun, and P. Lv, “Beekeeper: A blockchain-based
iot system with secure storage and homomorphic computation,” IEEE
Access, vol. 6, pp. 43 472–43 488, 2018.

[10] B. W. Nyamtiga, J. C. S. Sicato, S. Rathore, Y. Sung, and J. H. Park,
“Blockchain-based secure storage management with edge computing for
iot,” Electronics, vol. 8, no. 8, 2019.

[11] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena, “Droidvault:
A trusted data vault for android devices,” in 2014 19th International
Conference on Engineering of Complex Computer Systems, 2014, pp.
29–38.

[12] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Comput. Surv., vol. 51, no. 6, Jan. 2019.

[13] D. Hein, J. Winter, and A. Fitzek, “Secure block device – secure, flexible,
and efficient data storage for arm trustzone systems,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, 2015, pp. 222–229.

[14] (2020) Android keystore system. [Online]. Available:
https://developer.android.com/training/articles/keystore

[15] I. E. Bagci, S. Raza, U. Roedig, and T. Voigt, “Fusion: coalesced
confidential storage and communication framework for the iot,” Security
and Communication Networks, vol. 9, no. 15, pp. 2656–2673, 2016.

[16] E. Boo, S. Raza, J. Höglund, and J. Ko, “FDTLS: supporting dtls-based
combined storage and communication security for iot devices,” in 16th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems,
MASS 2019, Monterey, CA, USA, November 4-7, 2019. IEEE, 2019,
pp. 127–135.

[17] J. Schaad, “Cbor object signing and encryption (cose),” Internet Requests
for Comments, RFC Editor, RFC 8152, July 2017.

[18] C. Bormann and P. Hoffman, “Concise binary object representation
(cbor),” Internet Requests for Comments, RFC Editor, RFC 7049,
October 2013.

[19] H. Krawczyk, “Sigma: The ‘sign-and-mac’ approach to authenticated
diffie-hellman and its use in the ike protocols,” in Advances in Cryp-
tology - CRYPTO 2003, D. Boneh, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 400–425.

[20] M. Tiloca, G. Selander, F. Palombini, J. P. Mattsson, and J. Park, “Group
oscore - secure group communication for coap,” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-core-oscore-groupcomm-14, March
2022.

[21] T. Vu Chien, H. Nguyen Chan, and T. Nguyen Huu, “A comparative
study on operating system for wireless sensor networks,” in 2011 Inter-
national Conference on Advanced Computer Science and Information
Systems, 2011, pp. 73–78.

[22] L. F. Project, “Zephyr project,” https://www.zephyrproject.org/, 2020.
[23] Zolertia Firefly platform, Zolertia S.L, 2018. [Online]. Available:

https://github.com/Zolertia/Resources/wiki/Firefly
[24] C. Cremers, L. Garratt, S. Smyshlyaev, N. Sullivan, and C. Wood,

“Randomness improvements for security protocols,” Internet Requests
for Comments, RFC Editor, RFC 8937, October 2020.

260

Paper VI

AC-SIF: ACE Access Control for Standardized
Secure IoT Firmware Updates

Joel Höglund, Anum Khurshid, Shahid Raza
RISE Research Institutes of Sweden

Isafjordsgatan 22, 16440 Kista, Stockholm
{joel.hoglund, anum.khurshid, shahid.raza}@ri.se

Abstract—Globally identifiable, internet-connected embedded
systems can be found throughout critical infrastructures in
modern societies. Many of these devices operate unattended for
several years at a time, which means a remote software update
mechanism should be available in order to patch vulnerabilities.
However, this is most often not the case, largely due to interoper-
ability issues endemic to the Internet of Things (IoT). Significant
progress toward global IoT compatibility has been made in recent
years. In this paper, we build upon emerging IoT technologies
and recommendations from IETF SUIT working group to design
a firmware update architecture which (1) provides end-to-end
security between authors and devices, (2) is agnostic to the
underlying transport protocols, (3) does not require trust anchor
provisioning by the manufacturer and (4) uses standard solutions
for crypto and message encodings. This work presents the design
of a firmware manifest (i.e., metadata) serialization scheme based
on CBOR and COSE, and a profile of CBOR Web Token (CWT)
to provide access control and authentication for update authors.
We demonstrate that this architecture can be realized whether
or not the recipient devices support asymmetric cryptography.
We then encode these data structures and find that all required
metadata and authorization information for a firmware update
can be encoded in less than 600 bytes with this architecture.

Index Terms—ACE; SUIT; COSE; IoT; security.

I. INTRODUCTION

The need for secure firmware updates in the Internet of
Things (IoT) has been apparent for several years. Seen in a
longer perspective, the IoT is still in its infancy, and the current
situation regarding software updates for IoT is comparable to
personal computers in the 1990s [1]. Most embedded systems
do not have a system in place for remote software updates,
which means device operators must manually download and
install them on each device [2]. As a result, many IoT deploy-
ments are simply never updated, even after vulnerabilities are
found, because the labor cost outweighs the perceived benefit.

The IoT is traditionally characterized by a lack of standards,
which incentivizes companies to develop proprietary solutions
[3]. For example, Texas Instruments (TI) and Amazon Web
Services introduced an update framework specifically for TI
devices running Amazon FreeRTOS [4]. This approach leads
to vendor lock-in, where each manufacturer offers mutually
incompatible software ecosystems. This ultimately hurts the
industry and consumers: it prevents end users to freely com-
pose networks of devices from different manufacturers, and
it creates prohibitively high costs for smaller companies to
enter the market and compete, whose only option might be to

Authorization
Server (ACE)

Client (ACE)
Author (SUIT)

access token (ACE)

manifest (SUIT)

firmware image

Firmware Server (SUIT) Resource Server (ACE)
Firmware Consumer (SUIT)

Fig. 1. Our proposed firmware update architecture, combining ACE authoriza-
tion mechanisms with proposed Software Updates for IoT (SUIT) solutions.

become sub-providers to providers of proprietary ecosystems.
Embedded systems come with a wide range of hardware,
operating systems, capabilities and constraints, which should
not be a reason for incompatibility. New standards, such as
6LoWPAN [5], DTLS [6], CoAP [7] and OSCORE [8], enable
secure IPv6 networking on devices with only tens of kilobytes
of RAM, resulting in constrained devices being globally
addressed with internet protocols. Although the content of
firmware updates varies between devices, an industry-wide
standard for the distribution of these updates enables the
desired interoperability, where the same update infrastructure
can serve multiple, or heterogeneous, deployments, instead
of requiring several custom solutions. The need for common
standards in the area and its challenges is identified within the
Internet Engineering Task Force (IETF) standard [9] leading to
the formation of the Software Updates for IoT (SUIT) working
group. To have long term impact, a secure update framework
must support existing embedded systems and systems which
have yet to be conceived. The working group describes a
firmware update solution consisting of three components: a
mechanism for transporting updates, a manifest containing
metadata about the update, and the firmware image [10]. SUIT
suggests the following design requirements for the update
architecture: (i) agnostic to firmware image distribution, (ii)
friendly to broadcast delivery, (iii) built on state-of-the-art
security mechanisms, (iv) not vulnerable to rollback attacks,

54Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

(v) minimal impact on existing firmware formats, (vi) enables
robust permissions controls and (vii) diverse modes of opera-
tion.

Among the challenges of specifying and implementing an
architecture to meet these requirements are how to solve access
control and credential management. Without adequate security,
an update mechanism becomes an attack vector in itself, and
can be used to install malware or simply brick devices. Hence,
IoT devices must be able to verify the origin and integrity of
the firmware specified in the manifests, and the permissions
of the update author. In this paper, we present a solution to
this problem based on the Authentication and Authorization
for Constrained Environments (ACE) framework. A high level
illustration is shown in Figure 1. The main contributions of this
work are presented through the following sections:
IV A firmware manifest design and update architecture,

based on the ACE framework and SUIT recommenda-
tions, to provide both authentication and authorisation
mechanisms for secure updates.

V Proposals for the use of CBOR Web Tokens (CWT) for
Proof-of-Possession (PoP) in the update architecture.

VI An implementation and evaluation of the manifest and
access tokens described in Sections IV and V.

The rest of the paper is organized as follows. The IoT security
standards providing the basis of our update architecture are
discussed in Section II. Related work is presented in Section
III. In Section VII we discuss the security consideration of the
proposed architecture, and conclude the paper in Section VIII.

II. BACKGROUND AND THREAT MODEL

This section presents IoT security standards and protocols
which form the basis of our proposed update architecture,
followed by the assumed threat model.

We briefly summarize the Constrained Application Proto-
col (CoAP), Concise Binary Object Representation (CBOR),
CBOR Object Signing and Encryption (COSE), Public Key
Infrastructure (PKI), Authentication and Authorization for
Constrained Environments (ACE) and CBOR Web Tokens
(CWT).

A. The Constrained Application Protocol (CoAP)

Typical constrained devices are sensors, actuators or both.
Heavy computations are offloaded to more powerful devices,
while the nodes receive commands, transmit sensor readings
and perform periodic tasks. These types of networks are well-
suited to RESTful services, but traditional web protocols like
HTTP incur an unacceptable overhead for small devices. This
has been alleviated by CoAP, a lightweight version of HTTP
using binary message encodings rather than human-readable
formats and running on top of UDP instead of TCP.

B. CBOR encoding and COSE

In web applications, where computing resources are plen-
tiful and human readability is advantageous, data representa-
tions such as XML and JSON have widespread use. For the
IoT, CBOR has become the preferred encoding scheme as it

Fig. 2. Network protocols for token-based authentication in the IoT (ACE)
along with their web counterparts (OAuth2.0).

is compact, offers lower message overhead and is designed
for efficiency [11]. In applications requiring cryptographic
operations, COSE is a standard with increasing usage in
IoT [12]. COSE provides a standardized format for encryption,
signing and Message Authentication Codes (MAC).

C. Public Key Infrastructure (PKI)

PKI provides the basis of authentication and access control
in modern networked systems, by managing the distribution
and revocation of digital certificates. These certificates rely on
asymmetric cryptography, which is computationally demand-
ing for constrained devices. New standards and proposals for
lightweight certificate enrollment targeting IoT have provided
important PKI building blocks [13][14]. Experimental analyses
of these protocols have demonstrated that PKI enrollment is
now within the capabilities of constrained devices [15][16].
However, many existing IoT networks still rely on Pre-Shared
Keys (PSK), shared with all parties the devices communicate
with, or raw public keys (i.e., asymmetric cryptography with-
out attached certificates).

D. The ACE Framework

ACE is an authentication and authorization framework for
IoT, built on CBOR, COSE, CoAP and OAuth 2.0 [17]. Clients
request access to protected resources from an Authorization
Server (AS). If successful, the AS grants the client a token
which is bound to a secret key in the client’s possession, a
specific resource and an expiration date. This token is then
used as proof of authorization when accessing the Resource
Server (RS). The RS can optionally send an introspection
request to the AS to confirm the token’s validity. A network
stack with ACE is shown in Figure 2. In the context of our
proposed architecture, the recipient IoT devices act as the RS,
as illustrated in Figure 1.

There exists a number of proposals for profiling ACE to be
used together with DTLS [18], OSCORE [14] or MQTT [19].

E. CBOR Web Tokens (CWT)

The ACE framework uses CWT instead of their OAuth
counterpart, JSON Web Tokens (JWT) [20]. A token is es-
sentially a small, serialized object containing claims about a

55Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

subject, with some cryptographic guarantees generated by the
issuer (i.e., the AS). The precise encoding of CWT claims are
use-case dependent, but all signatures, MACs and encryption
are done following COSE format specifications. Access tokens
are bound to a key known to the token bearer. These are
known as Proof-of-Possession (PoP) keys, and the semantics
of binding them to CWTs and requesting them through ACE
are described in two separate documents, [21] and [22].

F. Threat Model

Our assumptions on the capabilities of an attacker follow
the Dolev-Yao adversarial model [23]. An attacker can eaves-
drop and record sent messages, and inject messages into the
communication. We assume that the adversary cannot break
chryptographic functions, and does not have direct access to
tampering with the IoT devices.

III. RELATED WORK

Firmware updates can be grouped into two categories:
image-based updates and differential updates. A 2017 survey
among embedded software engineers found that almost 60%
of respondents had a way of remotely updating their products
and all of them used systems developed in-house, with a
clear preference for image-based updates [2]. Bootloaders
that utilize this approach, such as MCUboot [24], partition
the device ROM into two sections – one for the old image
and one for the new – in a way that a backup exists if
the new firmware fails to boot. Differential firmware updates
are far more diverse, encompassing module-based approaches
[25][26], binary patching [27], binary compression [28], and
more. Our work regards the secure distribution of firmware
updates, and is agnostic to the firmware content or installation
method.

A. Update Distribution Architectures

Software updates on systems with relatively few resource
constraints are done via package managers, such as RPM
or dpkg, and various commercial app stores. The trust an-
chors required to verify updates with PKI operations, such
as code signing, are pre-installed in the operating system. A
2010 paper argued that because update architectures are an
attractive target to attackers, recipients should never rely on
a single signature [29]. Instead, the authors advocated for a
(t, n) signature threshold scheme, whereby a recipient will
not accept an update unless t out of n trusted signers have
provided a signature. A profile of this scheme for constrained
IoT was later proposed in 2018 [30]. Devices would be
provisioned with the Original Equipment Manufacturer (OEM)
certificate and trust anchors. The OEM would send signed
update metadata to a device owner’s domain controller server.
This server would then sign and forward the message to the
end devices; hence the update is (2, 2) in the (t, n) notation.

Code signing by firmware update authors presents a problem
for the IoT. In order for devices to verify the signatures, they
must be provisioned with a list of authorized authors and
their trust anchors. Moreover, update authors (for instance

the OEM) are likely to be from outside the device owner’s
organization, and the device’s lifetime may exceed that of the
validity period of the update author’s certificate which was
available when initially deploying the IoT device. Our work
solves these problems by incorporating a token-granting Au-
thorization Server, which is capable of handling all certificate-
based authentication on behalf of the IoT devices.

B. Software defined IoT

An approach to software updates for IoT is presented in
[31], where more powerful devices act as controllers for more
constrained IoT devices, building upon earlier work to define
software defined networks for IoT [32]. This approach can
offer solutions for heterogeneous networks which include both
more powerful devices and devices which are themselves too
constrained to act as fully independent endpoints, but does not
address questions of standardisation.

C. Ongoing Standardisation Work

Key points of providing well specified mechanisms for
secure software updates, are to achieve long time support
capabilities and limit the risks of reliance on proprietary
systems. Hence proposals for solutions need to relate to the
ongoing standardisation efforts in the area. The SUIT working
group within IETF has produced three core documents: one
RFC describing the SUIT architecture [33], one RFC on
a firmware manifest information model [34] and one draft
specifying a proposal for a manifest format [35]. The pro-
posal describes one instantiation of firmware manifests with
CBOR/COSE encoding. It includes a new scripting language
and recommendations that a series of commands should be
embedded in SUIT manifests for firmware installation. This
approach has its drawbacks, most notably the steep increase
in parser complexity, which is likely to deter some vendors
from adopting the standard. Including scripts in the manifest
would also introduce new security vulnerabilities. The pro-
posed scripting format contains instructions to verify firmware
digests and check update compatibilities. This generates new
issues about error handling, and how the device should proceed
if an update author neglects to include critical security checks
in the installation script. Our work defines a set of proce-
dures to be followed by all manifest recipients; the manifest
itself contains no instructions. The SUIT documents do not,
however, describe how manifest encryption keys are to be
distributed, nor how recipient devices are meant to verify
author permissions. With the exception of scripting support,
our manifest design follows the recommendations stated in
these documents, and extends it by including lightweight
solutions for authorization.

A 2019 paper by Zandberg et al. was the first to provide an
implementation and performance analysis of a SUIT firmware
manifest [36]. The work focused primarily on the RAM, ROM
and CPU overhead incurred based on the choice of signing
algorithm used for the manifest. Our work, in contrast, is
focused specifically on how a SUIT manifest must be encoded
to support token-based access control and key distribution, and

56Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

considers both PSK and certificate-based use-cases. A recent
survey on IoT update solutions shows that the study of SUIT
related solutions is so far in its infancy, with only one other
work mentioned besides the Zandberg et al. paper [37]. The
short paper by Hernández-Ramos et al. discuss update related
challenges. They conclude that the SUIT proposals might
benefit from being aided by blockchain based mechanisms,
which illustrates their complementary approaches [38].

D. Lightweight Machine-to-Machine

The Lightweight Machine-to-Machine (LwM2M) protocol
is a device management protocol targeting IoT. The versions
of the protocol since 2018 include a firmware update object
[39]. This specification is similar to the SUIT model as it
supports a push or pull architecture for firmware metadata,
and firmware images can either be packaged with the metadata
or retrieved from another server. However, security considera-
tions are explicitly left outside the scope and no threat model
is described. Access control, authentication and confidentiality
are left entirely to the transport and application layer security
mechanisms. This means that LwM2M is not a competitor
to the SUIT proposals, but rather a possible framework in
which the update solutions could be used. Early attempts in
this directions have been reported in [40].

IV. PROPOSED FIRMWARE UPDATE ARCHITECTURE

The communication architecture proposed in SUIT is flex-
ible in a way that updates can be triggered either by the
devices or the firmware/update authors (i.e., push or pull). The
manifests can be distributed with or without the corresponding
firmware images [33]. Our proposed architecture abides by
these principles, but deviates in the way authors are authenti-
cated and firmware is verified. SUIT states that a manifest
should be directly signed by its author. This requires the
provisioning of trust anchors and legitimate author identities.
Moreover, the most constrained devices which still rely on
symmetric keys (i.e., PSK) lack the ability to verify digital
signatures. We approach this as an access control problem
and provisioning devices with a list of trusted authors before
deployment is insufficient for a number of reasons, such as:

• Author certificates may expire or are revoked.
• Original trusted Update Authors may fail to issue updates

(e.g., when devices outlive their warranty).
• Device owners may not want to accept all updates issued

by the manufacturer.
Hence we conclude that authentication is not sufficient for
authorization. To address these concerns, we propose inte-
grating the SUIT communication model with access control
mechanisms provided by the ACE framework. This solution
would allow device operators to centrally manage the list
of authorized Update Authors (UA), and could be realized
entirely using existing standard-based building blocks. Addi-
tionally, our proposed architecture can be realized whether or
not the recipient IoT devices can verify digital signatures.

Combining SUIT and ACE results in the architecture illus-
trated in Figure 1. The recipient IoT devices act as firmware

consumers from the SUIT perspective. Update Authors (UA)
in SUIT play the role of the client in ACE (i.e., the en-
tity requesting tokens). The client requests access to the
firmware/update from the Authorization Server (AS). Finally
the firmware updates are stored at, and can be downloaded
from, a SUIT firmware server.

A. Authorization Tokens

A simple approach to distributing firmware updates with
ACE would be to use one of the mentioned proposed profiles
of the framework for secure channel establishment (with
DTLS, OSCORE or MQTT). With an encrypted and mutu-
ally authenticated channel between the Update Author and
recipient, manifests and images would not require further
signatures or authentication codes. However, to enable a larger
range of use-cases, firmware manifests must be standalone
verifiable objects [9]. In our proposed update architecture,
tokens are issued to the UA simply to authorize the distribution
of manifests. The manifests themselves are authenticated and
(partially) encrypted, and can be sent over any channel.

An ACE exchange always begins with establishing a secu-
rity context between the client (i.e., UA) and the Authorization
Server (AS). At this time, the AS authenticates the client and
verifies their permissions to distribute updates before issuing
an access token. If a symmetric PoP key is requested, it
will be sent to the client over this secure channel. Access
tokens are not required for the distribution of firmware images.
Instead, the manifests contain a secure message digest of
the corresponding image. This ensures integrity, and allows
devices to retrieve firmware images from another server. The
firmware retrieval could take place over an encrypted channel,
or a combination of untrusted channels and encryped firmware
images, depending on the confidentiality needs. We leave the
details of this outside the scope of our architecture.

Our update architecture leverages the ACE framework for
the provisioning of CBOR Web Tokens for PoP. There is some
flexibility in how these tokens are protected and authenticated
with COSE, which is discussed in Section V. The CWT
standard defines a set of common claims to include in each
token, but leaves the precise meaning of the fields up to the
particular use-case. We use four of these and define them as:
iss : issuer i.e., the URI of the AS server
aud : audience i.e., the recipient device class’s UUID
iat : issued at i.e, the start of the access token’s validity
exp : expiration i.e., the end of the access token’s validity
In addition, all tokens contain the confirmation field (cnf)
which contains the PoP key, following the specification in [21].

B. Manifest Distribution

Our proposed architecture is designed to support both
image-based and differential updates with dependencies. In the
latter case, recipient devices must parse the dependency list,
retrieve corresponding manifests, and parse their dependency
lists (illustrated in Figure 3). Installing updates often requires
devices to reboot, and potentially lose track of the state in
the update process. We propose that devices query a known

57Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

Fig. 3. Procedure followed by recipient devices for manifest dependency tree
traversal and firmware update installation.

Fig. 4. Update sequence diagram for one possible use-case. The Update
Author (UA) establishes a secure channel with the AS before pushing firmware
manifest A to a recipient device. Since firmware update A is dependent on
firmware update B, the device pulls the dependency list and parses it. Note
that token introspection is an optional step.

manifest distributor at startup and request the latest manifest
and corresponding access token. The device will know the
update is complete when it receives a manifest matching its
current firmware.

SUIT describes three categories of update architectures:
server-initiated, client-initiated and hybrid updates. The re-
cursive process for dependency installation used in our ar-
chitecture is categorized as a client-initiated update. Figure 4
depicts interactions between actors for an update with a single
dependency. The flow is server-initiated, for the cases where
the update author has a known access path to the IoT device,
but could easily be turned into client initiated through adding
a polling step by the IoT device.

Fig. 5. Our proposed firmware manifest structure. The manifest is encoded as
two separate CBOR maps, with the integer key values indicated in parentheses.

C. Manifest Design

We propose encoding firmware manifests as two separate
CBOR maps: one containing information about the intended
recipient of the update and another containing information
about dependencies and image contents. The latter is en-
crypted, and both are authenticated in a single operation using
an Authenticated Encryption with Associated Data (AEAD)
algorithm. With this design, it is possible for a UA to broadcast
an access token and manifest to a fleet of IoT devices,
and any devices to which the update does not apply can
quickly ascertain this without performing any cryptographic
operations. Hence it is in line with SUIT recommendations to
keep the update mechanism broadcast friendly. It is sensible
to encrypt information about the image contents, in order to
conceal information that is useful to an adversary attempting
to gain insights into the software running on devices and its
potential vulnerabilities. This includes the dependencies and
the exact firmware URI.

In accordance with SUIT’s recommendations, device classes
representing the target IoT devices are given a 128-bit Univer-
sally Unique Identifier (UUID) [41], which is present through
the manifest’s class_uuid field. In our proposed architec-
ture, devices ascertain whether the source of the manifest is
authorized to issue updates by comparing this field to the
aud value in the accompanying access token. A timestamp
is mandatory in order to prevent rollback attacks, in which an
attacker replays an earlier, legitimate firmware manifest with
known vulnerabilities. IoT devices must verify that a manifest
is issued more recently than their current firmware version. By
storing the included timestamp of the current firmware version,
a simple ordering check is sufficient to determine the temporal
relation between manifests, and does not require access to a
well synchronized clock.

The hash of the corresponding firmware image is included
in the image_digest field. The URI of the firmware
server can be specified in the encrypted firmware_uri
field unless the location is already known to the devices.
To handle use-cases where only devices with certain old
firmware versions require a patch, the manifests optionally
include a qualifiers list. This contains a list of firmware
digests that a device must already have installed for the
update to apply; otherwise it is discarded. The encrypted

58Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I
CRYPTOGRAPHIC ALGORITHMS EXECUTED BY THE RECIPIENT FOR EACH

APPROACH DESCRIBED IN SECTION V.

AEAD ECDSA ECDH KDF

A manifest, token
B manifest, token token manifest
C manifest token manifest manifest
D manifest token manifest

dependencies field indicates a list of firmware images
which must be installed before installing the present one. This
enables differential updates and is handled as per Figure 3.

D. COSE Wrappers

Our proposed manifest is designed for AEAD algorithms,
several of which are supported natively by the COSE standard.
These algorithms take a Content Encryption Key (CEK), a
plaintext and some Additionally Authenticated Data (AAD) as
inputs, and produce a ciphertext as output. The unencrypted
portion of our manifest design is used as the AAD, and the en-
crypted portion forms the plaintext. The resulting ciphertext is
encapsulated in a COSE_Encrypt object. In total, a recipient
IoT device will receive three separate CBOR-encoded objects,
all of which must be valid in order to accept the update: the
token, the AAD, and the COSE-wrapped encrypted manifest
data. The recipients field in a COSE wrapper is used to
encipher the CEK with Key Encryption Keys (KEK) known
only to the intended recipients. There are several ways to
derive this KEK, which is discussed in further detail in the
upcoming sections.

V. AUTHENTICATION OPTIONS

Access control and cryptography in the IoT must be dis-
cussed in the context of device capabilities; this ultimately
determines the available options. To this end, we group devices
into two broad categories: (i) devices that rely entirely on PSK,
(ii) devices that possess unique asymmetric key pairs (e.g., dig-
ital certificates) and can verify digital signatures. In this section
we describe four distinct applications of COSE for protecting
firmware manifests and the corresponding access tokens. Only
the first option is applicable to devices restricted to only
using PSK; the others are applicable wherever asymmetric
cryptography is available, where devices are provisioned with
certificates via a PKI. The message overhead of each option
is analyzed in Section VI.

A. Symmetric PoP Key with PSK

Reliance on PSK for security precludes the use of digital
signatures and Diffie-Hellman key exchange algorithms. In
addition, since the network’s security is based entirely on the
secrecy of the PSK, these keys should never be sent to a third
party (i.e., an Update Author). We address these constraints by
issuing a unique symmetric PoP key with each access token.
The key is sent to the author over its secure channel with the
AS, and is also included in the cnf field of the access token.
The token is encapsulated in a COSE_Encrypt0 object using

the network PSK for encryption by the AS, and the manifest is
encapsulated in another using the PoP key. It should be noted
that this approach is subject to attack vectors not present in
the other authentication methods (see Section VII).

B. Symmetric PoP Key

Symmetric PoP keys are an option also where asymmetric
cryptography is available. We suggest the following approach,
which is not conventional, but well-suited to this particular
application. The AS generates the PoP key and encrypts it with
itself in a COSE_Encrypt0 object. This is then included in
the cnf field of the access token, and the token is encapsulated
as the payload of a COSE_Sign1 object signed by the AS.
(The following later verification of this signature is what
requires asymmetric cryptography capabilities by the receiving
IoT device.) The UA distributes the CEK to recipient devices
via the recipients field in the manifest’s COSE wrapper.
Recipients can then verify that this CEK is the one contained in
the signed token by decrypting the cnf field. The motivation
for this approach is to avoid including any recipients in the
token itself, as this would require the AS to have knowledge
of the intended recipients’ public keys. The UA must know
the recipients’ public keys in order to encipher the CEK.

C. Asymmetric PoP Key, Direct Key Agreement

In the case of asymmetric PoP keys, the cnf field of the
CWT contains the COSE encoding of a public key belonging
to the UA. The token is then encapsulated in a COSE_Sign1
wrapper. The UA now has two options for deriving a CEK
for the manifest. The first is through direct key agreement.
This type of algorithm applies a key exchange protocol – in
this case Elliptic Curve Diffie-Hellman (ECDH) – and a Key
Derivation Function (KDF) to generate the CEK directly. The
author must use the key pair bound to the token to prove their
authorization.

D. Asymmetric PoP Key, Key Wrap

The second asymmetric PoP key approach is to use the
key derived through ECDH as a Key Encryption Key (KEK)
to encipher a randomly-generated ephemeral CEK. These
two approaches have implementation nuances and security
considerations which are discussed in Sections VI and VII.
Table I summarizes the cryptographic operations that recipient
devices much perform in order to process manifests and tokens
with each of the four described authentication options.

VI. IMPLEMENTATION

The encoding scheme for each authentication options dis-
cussed in the previous section is shown in Table II. In this
section, we generate firmware manifests and access tokens for
each of the four cases. The purpose of this exercise is both to
demonstrate the viability of the proposed architecture, and to
evaluate the differences in storage and transmission overhead.

59Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE II
COSE WRAPPERS FOR EACH MANIFEST-TOKEN COMBINATION

DESCRIBED IN SECTION V.

Authentication Manifest Token

A PSK COSE_Encrypt0 COSE_Encrypt0
B Symmetric PoP key COSE_Encrypt COSE_Sign1
C Asymmetric PoP key COSE_Encrypt COSE_Sign1
D Asymmetric PoP key COSE_Encrypt COSE_Sign1

Fig. 6. Encoded sizes of the manifest, token and AAD for each approach
in Section V.

A. Profile and Assumptions

For our implementation and analysis, we populate the
manifest fields illustrated in Figure 5 with example data. In
order to do so we make the following assumptions:

• Images are identified with 32-byte digests.
• Timestamps are represented in relative time.
• The manifest has two qualifiers and two dependencies.
• The firmware server URI is coaps://example.com.
• The Authorization Server URI is coaps://example.com.
The authenticated and encrypted example manifest com-

ponents are 138 and 116 bytes, respectively, after CBOR
serialization. COSE offers a variety of algorithms with a
range of key sizes for each cryptographic operation. For our
implementation, we have chosen the following:

• ECDSA signatures with 256-bit keys.
• AES-CCM with 128-bit keys, 64-bit tag and a 13-byte

nonce for content encryption.
• AES 128-bit key wrap.
• ECDH Ephemeral-Static (ES).
• HMAC-Based Extract-and-Expand Key Derivation Func-

tion (HKDF) with SHA-256.

B. Results and comparison with other SUIT proposals

The update and authentication information is separated into
three separate CBOR-encoded objects: the token, the en-
crypted manifest data, and the plaintext authenticated manifest
data (a.k.a. the additionally authenticated data, or AAD). The
results are shown in Figure 6. Option A has the smallest total
size, with all three CBOR objects totalling 380 bytes. Option
C has the largest footprint, totalling 537 bytes. Since the
differences are relatively minor, the choice of method should
be guided by the offered security properties, as discussed
below in VII.

Fig. 7. Encoded sizes of the manifest, AAD and token when the update has
multiple recipients.

In the most recent SUIT manifest proposal there are exam-
ple manifest samples, which allow us to compare our proposals
with the draft. In [35] the minimal manifest is only 237 bytes,
but for example manifests with content similar to the sample
used in our evaluation, the size is between 270 and 400
bytes. The main difference is the addition of our relatively
large access tokens, since they are designed to be independent
authorization tokens, compliant with ACE requirements. Given
this added security functionality we find the added overhead
to be clearly acceptable.

In some deployments, it may be preferable for UAs to
upload both manifests and firmware images to a dedicated
firmware server to be retrieved by devices at a later time. This
is feasible within our framework as long as the corresponding
access token is stored alongside the manifest. The storage
overhead for manifests encoded with multiple recipients is
shown in Figure 7. The plot shows the encoded size of the
required objects for 1-4 recipients for each authentication
method. In Option A, all recipients receive an identical man-
ifest since they possess the same PSK. In Option B and D,
the CEK is wrapped, each additional recipient only requires
an additional entry in the recipients field of the COSE object.
Option C, however, derives a unique CEK for each recipient,
which means the manifest must be re-encrypted for every
target device, making C the least efficient option for broadcast
scenarios.

VII. SECURITY CONSIDERATIONS

The proposals in this paper are founded on well-vetted stan-
dards and encryption algorithms. However, there are protocol
details that must be fully understood in order to avoid security
lapses. A malicious firmware image could permanently disable
expensive hardware and compromise an entire network, there-
fore, great care must be taken to ensure an update distribution
mechanism does not become an attack vector in itself.

A. Non-Repudiation

The PSK use-case described in Section V-A precludes any
guarantees for the access token. Since the AS uses a symmetric
key known to all recipients, an adversary with control over
any device would be capable of generating fraudulent tokens

60Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

and PoP keys. This is problematic, although PSK networks are
already subjected to similar risks. Any adversary in possession
of a PSK could cause significant damage and disruption, even
without the ability to issue firmware updates. If a symmetric
PoP key is used and the token is signed by the AS, as in
Section V-B, non-repudiation is only guaranteed for the token,
but not necessarily the manifest. The UA must encipher the
PoP key for each recipient, so if any of the recipients are
controlled by an adversary, that adversary would then be in
possession of a valid token and the associated PoP key. The
use of symmetric PoP keys also breaks end-to-end security
between the author and recipients, because the key is known to
the AS. The analysis presented in Section VI demonstrated that
asymmetric PoP keys with Key Wrap has a similar overhead
but without the risks, making that approach clearly preferable.

B. Key Agreement

The manifest exchange between the author and recipients
is one-way, i.e., there is no nonce exchange or handshake
like in DTLS or EDHOC. The manifest’s CEK is either
wrapped (Options B and D) or derived directly (Option C),
as described in Section V from the author and recipients’ key
pairs. In COSE, ECDH key derivation comes in two types:
Static-Static (SS) or Ephemeral-Static (ES). In the former
case, the author of the COSE object declares that the CEK
is either wrapped or derived from the key pairs bound to
the author and recipient. In the latter case, the author of the
COSE object provides an ephemeral key pair generated for
a single encryption operation. ECDH-ES is generally safer to
use, because even if an adversary obtains the author’s private
key, it is not usable for decryption of other manifests or
impersonation of the author. It is therefore preferable for UAs
to request access tokens bound to an ephemeral public key,
not the public key found in their certificate.

C. Firmware Image Digests

Firmware manifests are only linked to firmware images via
the inclusion of a secure message digest. If a weak algorithm
with the possibility of a hash collision is used for this purpose,
such as SHA-1, devices may be exposed to fraudulent images
referenced by authentic manifests.

VIII. CONCLUSION

In this work we have presented an architecture based on
existing standards, which can address the urgent need for
secure firmware updates in the IoT. We have described the
challenges and limitations of access control in constrained
environments, and why a token-based framework, such as
ACE, is a promising candidate solution. In addition, we have
proposed encoding schemes for firmware manifests using the
CBOR and COSE standards, and detailed how these would
work in conjunction with CWT to provide authorized updates.
Examples of these objects were encoded and the result totaled
no more than 600 bytes for the firmware manifest data,
including authentication and authorization.

ACKNOWLEDGMENTS

This research is partially funded by the Swedish Foundation
for Strategic Research (SSF) Institute PhD grant, the SSF
aSSIsT project and by the H2020 CONCORDIA (Grant ID:
830927) project.

REFERENCES

[1] B. Schneier, “The Internet of Things is Wildly Insecure–
And Often Unpatchable,” January 2014. [Online]. Avail-
able: https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-
internet-of-things-and-thats-a-huge-problem/

[2] E. Stenberg. (2017, September) Key Considerations for
Software Updates for Embedded Linux and IoT. [Online].
Available: https://www.linuxjournal.com/content/key-considerations-
software-updates-embedded-linux-and-iot

[3] J. P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP:
The Next Internet. Morgan Kaufmann, 2010.

[4] N. Lethaby, “A more secure and reliable OTA update architecture for
IoT devices,” Texas Instruments, Tech. Rep., 2018. [Online]. Available:
http://www.ti.com/lit/wp/sway021/sway021.pdf

[5] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sep. 2007.

[6] “Datagram Transport Layer Security Version 1.2,” RFC 6347, Jan. 2012.
[7] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application

Protocol (CoAP),” RFC 7252, Jun. 2014.
[8] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object

Security for Constrained RESTful Environments (OSCORE),” RFC
8613, RFC Editor, Tech. Rep. 8613, Jul. 2019. [Online]. Available:
https://rfc-editor.org/rfc/rfc8613.txt

[9] H. Tschofenig and S. Farrell, “Report from the Internet of
Things Software Update (IoTSU) Workshop 2016,” RFC 8240,
RFC Editor, Tech. Rep. 8240, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8240

[10] B. Moran, M. Meriac, H. Tschofenig, and D. Brown, “A Firmware
Update Architecture for Internet of Things Devices,” Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-suit-architecture-05, Apr. 2019,
work in Progress.

[11] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” Internet Requests for Comments, RFC Editor, RFC 7049,
October 2013.

[12] J. Schaad, “CBOR Object Signing and Encryption (COSE),” RFC
8152, RFC Editor, Tech. Rep. 8152, Jul. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8152.txt

[13] P. van der Stok, P. Kampanakis, M. Richardson, and S. Raza, “EST-
coaps: Enrollment over Secure Transport with the Secure Constrained
Application Protocol,” Internet Requests for Comments, RFC Editor,
RFC 9148, April 2022.

[14] G. Selander, S. Raza, M. Furuhed, M. Vučinić, and T. Claeys,
“Protecting est payloads with oscore,” Working Draft, IETF
Secretariat, Internet-Draft draft-selander-ace-coap-est-oscore-05, May
2021. [Online]. Available: https://www.ietf.org/archive/id/draft-selander-
ace-coap-est-oscore-05.txt

[15] Z. He, M. Furuhed, and S. Raza, “Indraj: Certificate Enrollment for
Battery-powered Wireless Devices,” in Proceedings of the 12th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2019.

[16] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza, “PKI4IoT: Towards
public key infrastructure for the Internet of Things,” Computers &
Security, vol. 89, 2020.

[17] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and authorization for constrained environments (ace)
using the oauth 2.0 framework (ace-oauth),” Working Draft, IETF Sec-
retariat, Internet-Draft draft-ietf-ace-oauth-authz-46, November 2021.

[18] S. Gerdes, O. Bergmann, C. Bormann, G. Selander, and L. Seitz,
“Datagram transport layer security (dtls) profile for authentication
and authorization for constrained environments (ace),” Working Draft,
IETF Secretariat, Internet-Draft draft-ietf-ace-dtls-authorize-18, June
2021. [Online]. Available: https://www.ietf.org/archive/id/draft-ietf-ace-
dtls-authorize-18.txt

61Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

[19] C. Sengul and A. Kirby, “Message queuing telemetry transport (mqtt)-tls
profile of authentication and authorization for constrained environments
(ace) framework,” Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-ace-mqtt-tls-profile-17, March 2022. [Online]. Available:
https://www.ietf.org/archive/id/draft-ietf-ace-mqtt-tls-profile-17.txt

[20] M. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig, “CBOR Web
Token (CWT),” RFC 8392, May 2018.

[21] M. Jones, L. Seitz, G. Selander, S. Erdtman, and H. Tschofenig,
“Proof-of-possession key semantics for cbor web tokens (cwts),” Internet
Requests for Comments, RFC Editor, RFC 8747, March 2020.

[22] L. Seitz, “Additional oauth parameters for authorization in constrained
environments (ace),” Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-ace-oauth-params-16, September 2021. [Online]. Available:
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-16.txt

[23] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[24] MCUboot contributors, “MCUboot,” https://github.com/mcu-
tools/mcuboot, 2022.

[25] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 15–28.
[Online]. Available: http://doi.acm.org/10.1145/1182807.1182810

[26] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, “Gitar,”
Ad Hoc Netw., vol. 36, no. P1, pp. 127–151, Jan. 2016. [Online].
Available: https://doi.org/10.1016/j.adhoc.2015.05.017

[27] Jaein Jeong and D. Culler, “Incremental network programming for
wireless sensors,” in 2004 First Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004., Oct 2004, pp. 25–33.

[28] M. Stolikj, P. J. L. Cuijpers, and J. J. Lukkien, “Efficient reprogramming
of wireless sensor networks using incremental updates,” in 2013 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), March 2013, pp. 584–589.

[29] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, ser.
CCS ’10. New York, NY, USA: ACM, 2010, pp. 61–72. [Online].
Available: http://doi.acm.org/10.1145/1866307.1866315

[30] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghi, and G. Tsudik,
“Assured: Architecture for secure software update of realistic embedded
devices,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2290–2300, Nov 2018.

[31] N. Xue, D. Guo, J. Zhang, J. Xin, Z. Li, and X. Huang, “Openfunction
for software defined iot,” in 2021 International Symposium on Networks,
Computers and Communications (ISNCC), 2021, pp. 1–8.

[32] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk,
and A. Rindos, “Sdiot: A software defined based internet of things
framework,” Journal of Ambient Intelligence and Humanized Comput-
ing, vol. 1, pp. 453–461, 08 2015.

[33] B. Moran, H. Tschofenig, D. Brown, and M. Meriac, “A firmware update
architecture for internet of things,” Internet Requests for Comments,
RFC Editor, RFC 9019, April 2021.

[34] B. Moran, H. Tschofenig, and H. Birkholz, “A manifest information
model for firmware updates in internet of things (iot) devices,” Internet
Requests for Comments, RFC Editor, RFC 9124, January 2022.

[35] B. Moran, H. Tschofenig, H. Birkholz, and K. Zandberg, “A concise
binary object representation (cbor)-based serialization format for the
software updates for internet of things (suit) manifest,” Working Draft,
IETF Secretariat, Internet-Draft draft-ietf-suit-manifest-17, April 2022.

[36] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
“Secure firmware updates for constrained IoT devices using open
standards: A reality check,” IEEE Access, vol. 7, pp. 71 907–71 920,
2019.

[37] S. El Jaouhari and E. Bouvet, “Secure firmware over-the-
air updates for iot: Survey, challenges, and discussions,”
Internet of Things, vol. 18, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660522000142

[38] J. L. Hernández-Ramos, G. Baldini, S. N. Matheu, and A. Skarmeta,
“Updating iot devices: challenges and potential approaches,” in 2020
Global Internet of Things Summit (GIoTS), 2020, pp. 1–5.

[39] “Lightweight Machine to Machine Technical Specification 1.0.2,”
Open Mobile Alliance, Tech. Rep. OMA-TS-LightweightM2M-V1 0 2-
20180209-A, February 2018.

[40] IETF. Ietf hackathon: Software / firmware up-
dates for iot devices. IETF. [Online]. Avail-
able: https://datatracker.ietf.org/meeting/111/materials/slides-111-suit-
suit-hackathon-report-00

[41] P. J. Leach, R. Salz, and M. H. Mealling, “A Universally Unique
IDentifier (UUID) URN Namespace,” RFC 4122, Jul. 2005. [Online].
Available: https://rfc-editor.org/rfc/rfc4122.txt

62Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

