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Abstract
Internet of Things (IoT) solutions are continuously gaining popularity, the rising adoption of
the technology is accompanied by continuous research and development regarding costs opti-
mization and sustainability. Having a plethora of devices transmitting sensor data and await-
ing server commands is very costly in terms of processor utilization, each device has to main-
tain a connection session with the server. When it comes to scaling within IoT, the goal would
be to have a large number of inexpensive nodes (devices). To achieve the mentioned inexpen-
sive property; the characteristics of these nodes have to be scaled down, and the same goes
for the networks built out of them. This introduces the concept of resource constrained de-
vices, these are devices which aren’t equipped with the characteristics that would normally be
taken for granted in regular internet nodes. When the private key of an endpoint or certificate
authority is compromised, any certificate signed by them is revoked. While access to certifi-
cate revocation information is somewhat handled outside the IoT, the acquiring of revocation
information in resource constrained environments presents itself as a challenge.The proposed
solution for certificate revocation in resource constrained environments successfully utilizes
standard protocols to achieve the revocation functionality. By specifying integration vectors
accompanied with each design, the proposed changes in the standard protocols maintain the
current functionality of the latter and the integrity of the security mechanisms in place. The
research firstly proposes a Lightweight OCSP profile, results of the latter are evaluated and
found to give a reduction of ≈ 76.2% of the message size of the current profile of the OCSP
response. The proposed certificate revocation approach utilizing EDHOC and OCSP Stapling
proves to build a solid foundation for certificate revocation in IoT, with the approach being
tested on a microcontroller in a resource constrained setting, the overhead in terms of power
consumption on the microcontroller’s side was calculated to be a 30% increase in total power
consumption with respect to running plain EDHOC(EDHOC without Certificate Revocation),
the 30% increase corresponds to 1.26 Watts when running EDHOC initiator on an nRF52840DK
over 6LoWPAN.
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Zusammenfassung
Lösungen für das Internet der Dinge (IoT) erfreuen sich immer größerer Beliebtheit. Die steigende
Akzeptanz der Technologie wird von kontinuierlicher Forschung und Entwicklung im Hin-
blick auf Kostenoptimierung und Nachhaltigkeit begleitet. Eine Vielzahl von Geräten, die
Sensordaten übertragen und auf Serverbefehle warten, ist in Bezug auf die Prozessorauslas-
tung sehr kostspielig, da jedes Gerät eine Verbindungssitzung mit dem Server aufrechterhalten
muss. Wenn es um die Skalierung innerhalb des IoT geht, besteht das Ziel darin, eine große An-
zahl von kostengünstigen Knoten (Geräten) zu haben. Um die erwähnte kostengünstige Eigen-
schaft zu erreichen, müssen die Eigenschaften dieser Knoten verkleinert werden, und dasselbe
gilt für die aus ihnen aufgebauten Netzwerke. Dies führt das Konzept der ressourcenbeschränk-
ten Geräte ein, d. h. Geräte, die nicht mit den Merkmalen ausgestattet sind, die bei normalen
Internetknoten als selbstverständlich angesehen werden. Wenn der private Schlüssel eines
Endpunkts oder einer Zertifizierungsstelle kompromittiert wird, wird jedes von ihnen signierte
Zertifikat widerrufen. Während der Zugang zu Zertifikatswiderrufsinformationen außerhalb
des IoT in gewisser Weise gehandhabt wird, stellt die Beschaffung von Widerrufsinformatio-
nen in ressourcenbeschränkten Umgebungen eine Herausforderung dar Die vorgeschlagene
Lösung für den Zertifikatswiderruf in ressourcenbeschränkten Umgebungen nutzt erfolgreich
Standardprotokolle, um die Widerrufsfunktionalität zu erreichen. Durch die Angabe von Inte-
grationsvektoren die mit jedem Entwurf einhergehen, behalten die vorgeschlagenen Änderun-
gen an den Standardprotokollen die aktuelle Funktionalität der letzteren und die Integrität
der vorhandenen Sicherheitsmechanismen bei. Die Forschungsarbeit schlägt zunächst ein le-
ichtgewichtiges OCSP-Profil vor, dessen Ergebnisse ausgewertet werden und das eine Ver-
ringerung der Nachrichtengröße des aktuellen Profils der OCSP-Antwort um ≈ 76,2% ergibt.
Der vorgeschlagene Ansatz für den Widerruf von Zertifikaten unter Verwendung von EDHOC
und OCSP Stapling erweist sich als solide Grundlage für den Widerruf von Zertifikaten im IoT.
Bei Tests des Ansatzes auf einem Mikrocontroller in einer ressourcenbeschränkten Umgebung
wurde der Overhead in Bezug auf den Stromverbrauch auf Seiten des Mikrocontrollers als
30%ige Erhöhung des Gesamtstromverbrauchs im Vergleich zur Ausführung von einfachem
EDHOC (EDHOC ohne Widerruf von Zertifikaten) berechnet, die 30%ige Erhöhung entspricht
1,26 Watt bei der Ausführung des EDHOC-Initiators auf einem nRF52840DK über 6LoWPAN.
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1 Introduction
1.1 Motivation
IoT solutions are continuously gaining popularity, the rising adoption of the technology is ac-
companied by continuous research and development regarding costs optimization and sustain-
ability. Having a plethora of devices transmitting sensor data and awaiting server commands
is very costly in terms of processor utilization, each device has to maintain a connection session
with the server. In the case of wireless networks, the power requirements are increased with
RF antennas being introduced to the infrastructure.

Low-power Wide-area network (LPWAN)[1] introduced a group of technologies such as
Narrow Band IoT (NB-IoT) and Low-range Wider-area network (LORaWAN). The technolo-
gies aim to offer reliable connectivity at optimised power requirements, thus addressing issues
regarding sustainability of wireless network infrastructures in IoT.

When it comes to scaling within IoT, the goal would be to have a large number of inexpen-
sive nodes (devices). To achieve the mentioned inexpensive property; the characteristics of
these nodes have to be scaled down, and the same goes for the networks built out of them.
This introduces the concept of resource constrained devices[2], these are devices which aren’t
equipped with the characteristics that would normally be taken for granted in regular internet
nodes.

The concept of resource constrained devices introduces the challenge of developing com-
munication protocols that can overcome the unavailability of characteristics present in normal
internet nodes, such as large storage space and computation power. The challenge becomes
a question of how to achieve desirable functionality and performance with limited available
resources.

Constrained Application Protocol (CoAP)[3] is a great example, it provides a request-response
interaction model between application endpoints while meeting the requirements of low over-
head and simplicity for constrained environments.

Security protocols are known to require large buffer sizes and computation power, both of
these properties are unattainable in constrained nodes. This introduces the challenge of de-
veloping lightweight versions of these security protocols that can run on these devices, while
maintaining security integrity. Accordingly, constrained devices were classified according to
available data size(ram) and code size(flash), where class zero devices having less than 10kb
wouldn’t be able to directly communicate with the internet in a secure manner [2].

The emergence of the lightweight protocol suites introduces room to collectively leverage
them, in order to achieve desirable security properties in resource constrained environments
that would otherwise be unattainable.

1



2 Chapter 1. Introduction

Ephemeral Diffie-Hellman Over Concise Binary object representation (CBOR) Object Sign-
ing and Encryption (COSE) (EDHOC)[4] introduces a lightweight authenticated secure key
exchange protocol designed for highly constrained settings, EDHOC is used to establish high
quality cyrptographic keys that would be used for other lightweight security protocols.

1.2 Problem Statement
Session establishment is the precursor to communication between two endpoints. Establish-
ing a session starts with authentication, Public Key Infrastructure (PKI) allows issuing digital
certificates that authenticate the identity of users, devices or services. The digital certificate
binds a public-key to an owner, and the certificate itself can be trusted as it is signed with the
private key of a trusted authority. When the private key of an endpoint or certificate authority
is compromised, any certificate signed by them is revoked. While access to certificate revoca-
tion information is somewhat handled outside the IoT, the acquiring of revocation information
in resource constrained environments presents itself as a challenge. Constrained nodes don’t
have the resources to neither store revocation information nor keep a connection alive with a
querying protocol. The compromise of the private-key belonging to a node in an IoT infrastruc-
ture opens room for all kinds of cyber attacks, where the compromised node can now act as a
malicious entity in the network. IoT infrastructures need to have access to certificate revoca-
tion information, the question is how can this information be transported securely in resource
constrained environments.

1.3 Research Goals
The research will investigate the incorporation of certificate revocation in IoT public key infras-
tructures, specifically considering an IoT infrastructure that implements resource constrained
nodes, with the aim to contribute research work that would serve as a solid foundation to the
topic, and be part of contributing to the scalability of the IoT utilizing resource constrained
nodes.

For the solution to be practical and well adopted by the scientific body of the research sur-
rounding the topic, the author has defined certain criteria for the solution, the defined criteria
acts as a subset of the goals defined by the research.

The criteria for the potential solution to the problem statement is defined by as follows:

• The proposed solution should utilize standard protocols to ensure practicality and appli-
cability.

• Proposed changes to protocols should maintain the current functionalty of the latter and
the integrity of the security mechanisms in place.

• The proposed solution should be able to handle the challenges imposed by the constraints
of resource constrained environments.

• The proposed solution must maintain the security of the certificate revocation process.

• The overhead of the proposed solution should be minimal and within the capabilities of
resource constrained environments.
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1.4 Research Methodology
The text presents and follows a methodology to perform the research, where firstly the study
of the surrounding background knowledge and related work relative to the problem statement
is performed, the acquired knowledge is used to identify protocols to be analysed, with the
goal to acquire insights from the analysis that would create a foundation for the design phase.
The design phase uses the acquired insights to present the ideas that contribute to achieving
a solution to the problem statement. After the design phase; the research will implement,
evaluate and discuss an approach to contribute to a potential solution to the presented problem
statement. The usefulness of the research is largely dependent on how practical its findings are
to implement in production grade use cases and how widely they are adopted.

1.5 Delimitations
The research adopts a communication scenario between a constrained client and a non-constrained
server, the scope of the research focuses on how the proposal affects the constrained client and
doesn’t go into studying the non-constrained server end. The protocol libraries used in collabo-
ration with the approach presented by the thesis are moving targets and aren’t fully optimised
for resource constrained nodes, meaning that flash and ram occupied by the compiled binaries
goes beyond ranges assigned for constrained nodes regarding these storage sizes. The imple-
mentation phase only implements the necessary parts needed to acquire a proof of concept the
demonstration, the implementation should not be treated as a production grade solution.

1.6 Outline
Chapter 2 of the text begins by establishing a firm background regarding secure IoT frame-
works, public key infrastructures and resource constrained environments. The chapter then
discusses related work in the scope of certificate revocation in public key infrastructures.

Chapter 3 outlines the methodology followed to perform the research, the protocol analysis
phase and the experiment design from which the results will be acquired.

In Chapter 4, the thesis presents its proposal regarding a lightweight profile for OCSP and
the accompanying security considerations for the proposal.

In Chapter 5, the thesis presents its proposal on incorporating certificate revocation in ED-
HOC and the accompanying overhead and security considerations of the proposed approach.

Chapter 6 breaks down and discusses the acquired results, presenting insights and conclu-
sions on the proposed approaches and the research. The chapter also proposes future work as
a continuation to the work of this thesis.





2 Background
This chapter will present the compiled background study surrounding the problem statement,
the chapter will then mention related work in the scope of certificate revocation in public key
infrastructures.

2.1 Public Key Cryptography
One-way functions are mathematical functions that are easy to compute given any input, but
hard to invert given the output of some random input to the function. In this context, Com-
putational complexity theory defines the terms "hard" and "easy". In Public Key Cryptography
(PKC), two endpoints Alice and Bob use cryptographic algorithms to generate a key pair. The
cryptographic algorithms referred to here are those incorporating one-way functions, where
the "hard-to-invert" property is leveraged to create a set of private and public keys which are
mathematically related. The keys are then used for encryption to establish a secure communi-
cation channel.

2.2 Public Key Infrastructure
Digital certificates bind a public key to an owner, this relationship is verified by a trusted source
(Certificate Authority (CA)) that issues and signs a certificate. An example of a digital certifi-
cate is one that follows the X.509[5] standard, and those are called X.509 certificates. Running
public-key cryptography with raw keys opens room for man in the middle attacks leading an
adversary to establish a communication channel with a node in the network, using their own
key pair for encryption. This leads to the theft and loss of sensitive data, and in other cases
sabotaging entire systems.

2.3 X.509 PKI
A public key infrastructure provides a framework of encryption standards for communication
over public networks. The infrastructure is built on a trust that is established among clients,
servers and certificate authorities by the generation, exchange and verification of certificates.

The X.509 public key infrastructure[5] incorporates X.509 digital certificates in order to verify
that a public key belongs to the user, computer or service identity contained in the certificate.
The X.509 defines Certificate Revocation list (CRL)s, when a private key of a node is com-
promised; the public key certificate of that node is added to the CRL, this is called certificate
revocation. Each node in the network is required to have a fresh copy of the CRL, the period
of updating the local copy of the CRL is governed by the operational policy set by the organi-
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6 Chapter 2. Background

sation. In session establishment, the certificate of the communicating entity is cross referenced
with the CRL to ensure that the entity can be trusted and that its certificate has not been re-
voked. Depending on the communication scenario, the same is done for the responding entity.

2.4 The IoT and CRLs
In the scope of the IoT, the use of CRLs for revocation posed major problems with scalability
due to variations in size of the CRLs and the requirement that they would be kept on the device
memory. As IoT incorporates resource constrained devices[2], the variations in size would not
be acceptable. Delta CRLs introduced the option to update an on memory CRL, the problem
remained the same as the size of the CRLs would not be bounded.

Figure 2.1: The process of a certificate revocation check when using a certificate revocation list [6]

Figure 2.1[6] shows the process of using a certificate revocation list to check the revocation
status of the server’s digital certificate, step 3 shows that the client contacts the CA’s certificate
revocation server and downloads the certificate revocation list. This approach would not work
in the scope of the IoT and resource constrained devices.

2.5 The Online Certificate Status Protocol
The Online Certificate Status Protocol (OCSP)[7] introduced a request/response approach for
certificate revocation, where the status of a certificate concerning revocation could be queried
and a signed response would be generated regarding the validity of the certificate. An entity
querying an OCSP server is called an OCSP client,the client is responsible to verify the signa-
ture of the OCSP response, using the OCSP responder’s public key, the client must then verify
the signature of the certificate under question using the appended public key of certificate au-
thority. The OCSP server is also the OCSP responder, the latter can also be referred to as a
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Validation Authority (VA).

Figure 2.2: The process of a certificate revocation check when using the OCSP[6]

Figure 2.2[6] shows the process of using the OCSP to check the revocation status of a digital
certificate, in the case of this figure; the CA/CRL issuer is also the OCSP responder and the
client performs an OCSP request using the server certificate’s serial number. The client no
longer downloads a CRL and is only required to process the OCSP response.

While the OCSP offers a significant improvement over the resource demands of CRLs, it has
posed notable security and performance issues; (1) Due to the server-client model, OCSP re-
sponses are vulnerable to replay attacks. (2) if a relying party fails to establish a connection
with the OCSP responder, a decision has to be made, which can either be to communicate any-
way or to cease communication, both of which are not favourable cases regarding performance
and security. OCSP also posed privacy concerns, as the client’s metadata can be logged when
the client performs an OCSP request, the metadata includes the client’s IP address and time of
visit(time of trying to establish a session with the server).

2.6 OCSP Stapling
The above issues with OCSP contributed to the emergence of OCSP stapling[8], by incorporat-
ing a Transport Layer Security (TLS) handshake extension, that allows relying parties to request
a signed timestamped OCSP response along with the end entity’s certificate when establishing
a connection. This allows the end entity to forward either a cached OCSP response or a new
one in the case of including a nonce in the OCSP request, this addresses the downfalls of plain
OCSP. In the case of OCSP stapling, the OCSP response is referred to as the staple, and the
staple is signed by an OCSP responder whose certificate is signed by a CA.
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Figure 2.3: The process of a certificate revocation check when using OCSP Stapling - Adapted from[6]

Figure 2.3 - adapted from [6] - shows the process of acquiring certificate revocation status via
OCSP stapling, the client sends a request for the server’s certificate and a staple that includes
the revocation status of the certificate. The server performs an OCSP request and includes the
OCSP response along with the server certificate in the response sent to the client.

2.7 CBOR
Considering resource constrained nodes[2], the choice of encoding algorithm is a very critical
one, constrained nodes should be able to encode and decode data structures without requiring
a lot of computation power, and be able to do that without supporting a library that takes a sig-
nificant amount of the flash size, referring here to the Abstract Syntax Notation 1 (ASN.1)[9].
The encoding rules defined by the encoding algorithm must also be optimised to yield rela-
tively small message sizes compared to the case of non-constrained environments.

ASN.1 is used in X.509 certificates[5], the encoding is considered to be overly verbose for
constrained IoT environments. At the time of writing this text; there is ongoing work regarding
profiling X.509 certificates with CBOR encoding to reduce the certificate size significantly and
achieve associated performance benefits.[10]

The CBOR[11] encoding is equipped with design goals which are very attractive for con-
strained settings, the design includes the possibility of extremely small code size and exten-
sibility without the need to negotiate versions. CBOR allows map keys of any type, whereas
JSON only allows strings as keys in object values, this already shows the flexibility of CBOR
proving to be a preferred choice in resource constrained environments. CBOR is used by the
lightweight security protocol suite including CoAP[3] and EDHOC[4].

CBOR uses a jump table for encoding depending on the structure/semantics of the item
that will be encoded. An example for a CBOR encoding acquired using CBOR playground[12]
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is shown in Figure 2.4, the figure shows an example of encoding a Unicode Transformation
Format (UTF)-8 string, the encoding only adds two bytes to the original length of the string,
the first byte 0x78 indicates that the item is a UTF-8 string and the second byte contains the
length of the string.

Figure 2.4: An example for encoding a UTF-8 string, created with [12]

2.8 EDHOC
EDHOC[4] is a lightweight authenticated key exchange protocol designed for use cases consti-
tuting resource constrained environments, EDHOC re-uses the lightweight security software
suite of libraries; COSE[13] for cryptography, CBOR[11] for encoding and CoAP[3] for trans-
port, this way additional code size is maintained to be low.

Datagram Transport Layer Security (DTLS)[14] is another protocol used to establish an au-
thenticated, confidentiality and integrity-protected channel between two communicating peers,
where TLS[15] requires a reliable transport channel which typically would be Transmission
Control Protocol (TCP)[16], DTLS offers communication security protection for applications
that use User Datagram Protocol (UDP)[17].

Figure 2.5: Comparison of message sizes of DTLS handhshake and EDHOC protocols in bytes[18]
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A comparison between running EDHOC and DTLS with respect to message sizes shows
how EDHOC is superior, Message size is a very important parameter to be considered when
designing protocols that will operate in resource constrained environments, as the parame-
ter directly correlates to round trip times and accordingly power consumption. Figure 2.5[18]
shows message sizes when running both protocols with different methods for authentication,
usingRaw Public Keys (RPK) and Pre-shared keys (PSK) in combination with Elliptic-Curve
Diffie-Hellman Ephemeral (ECDHE).It is clearly seen that EDHOC is superior in terms of mes-
sage sizes using any of the provided authentication options.

Figure 2.6 shows an EDHOC exchange, a client communicating EDHOC is referred to as an
EDHOC initiator while the server is referred to as the EDHOC responder. The EDHOC mes-
sages contain External Authorization Data (EAD)fields, each message has its corresponding
EAD field.

Figure 2.6: EDHOC message flow[4]

Figure 2.7[4] shows the structure of an EAD item in EDHOC.EAD items allow the integration
of external security applications in EDHOC, where the processing of each item is defined in
separate specifications as EAD items are opaque to EDHOC. The items are then added into the
EAD fields of each EDHOC message, each EAD field is a CBOR sequence of EAD items where
each of the latter is a CBOR sequence as well[4].
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ead = (

ead_label : int,
?ead_value : bstr,
)

Figure 2.7: An Ead item[4]

EDHOC defines critical and non-critical EAD items, where the sign of the EAD label deter-
mines if an item is critical or not, a negative sign indicates that the EAD item is critical. Critical
EAD items affect the state of the protocol, if a critical EAD item is received and the endpoint
cannot recognize or process the item, it must send an error message and discontinue the proto-
col [4].

2.9 Constrained environments
In the scope of the IoT, message overhead and energy consumption majorly contribute to the
design considerations of the infrastructure. Scalability in IoT eventually means resource con-
strained environments, communication protocols running on constrained nodes always wel-
come any approaches that achieve a required functionality while decreasing overhead and
maintaining the integrity of the security properties of the infrastructure.

The Internet Engineering Task Force (IETF) produced RFC7228[2] which provide succint ter-
minology for different classes of constrained devices, RFC7228 mentions that a resource con-
strained device can be constrained in terms of memory, energy and the incorporated strategy
regarding using power for communication.

Table 2.1 shows classes of constrained devices with respect to their RAM and Flash sizes,
class C0 devices are very constrained that they are very unlikely to communicate directly to the
internet in a secure manner.

RAM size Flash size
Class 0 (C0) ≪ 10KiB ≪ 100KiB
Class 1 (C1) ∼ 10KiB ∼ 100KiB
Class 2 (C2) ∼ 50KiB ∼ 250KiB

Table 2.1: Classes of Constrained Devices (KiB = 1024 bytes) - adapted from RFC[7228][2]

Constrained devices beyond Class 2 exist, they are less demanding from a standards devel-
opment perspective as they can use existing protocols unchanged due to the relatively larger
memory. For a device to be referred to as a constrained device/node it does not have to be
constrained in memory; it can be constrained in terms of available energy or power or a com-
bination of all three. Table 2.2 shows the terminology for devices which are energy constrained
with respect to their power source. Devices running on batteries are said to be period energy-
limited, how limited they are depends on the the period of recharging or replacing the battery.
E9 devices have no limitations on available energy but can still be constrained by having limi-
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tations on available power.

Type of energy limitation Example power source
E0 Event energy-limited Event-based harvesting

E1 Period energy-limited Battery that is
periodically recharged or replaced

E2 Lifetime energy-limited Non-replaceable primary battery
E9 No direct quantitative limitations to available energy Mains-powered

Table 2.2: Classes of Energy Limitation - adapted from RFC[7228][2]

Table 2.3 shows terminology denoting how a device uses power for communication. When
wireless transmission is used, the radio constitutes a big portion of the total energy consumed
by the device. Where P9 is a device that is always connected and accordingly has no con-
straints on power, while P0 is used in settings where the device is only required to be on in cer-
tain intervals. P1 utilizes power saving methods to stay on while maintaining efficient power
consumption on the cost of communication performance i.e., latency.

Strategy Ability to communicate
P0 Normally-off Reattach when required
P1 Low-power Appears connected, perhaps with high latency
P9 Always-on Always connected

Table 2.3: Strategies of using power for communication - adapted from RFC[7228][2]

2.10 Related Work
Tanner Lindemer, Samuel, 2019; Digital Certificate Revocation [19] is a 2019 Masters Thesis
that proposes ways to adapt the OCSP protocol for performing certificate revocation in IoT,
the research firstly shows that certificate revocation can be partially implemented on a con-
strained device without changing the specification of the OCSP. They do this by running CoAP
to contact an OCSP responder via a CoAP-HTTP proxy. Then they compare that approach with
another vector where they propose a profile for both the OCSP response and request. [19] con-
cludes that it is much better to standardize a new protocol like their proposed profile for OCSP
instead of bringing in the current specification of OCSP into IoT PKI.

This research uses some of the arguments made by [19] when they were proposing the new
OCSP profile. This research is different in the sense of proposing a profile for the OCSP but
also presenting an integration vector to maintain backwards compatibility of the current speci-
fication of OCSP, accordingly bringing in that specification into IoT PKI. Downfalls in [19] from
the point of view of this research would be the idea of not considering the difficulty of stan-
dardising a new protocol instead of proposing a non intrusive change to an existing standard.
This research also introduces the idea of transporting the acquired revocation information in a
manner considered more suitable for resource constrained devices.

An internet draft titled CBOR Encoded X.509 Certificates [10] currently active in 2022 looks
into converting X.509 certificates into CBOR encoded ones referred to as C509 certificates. The
work is directly related to certificate revocation in IoT PKI. The internet draft is focusing on
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specifying C509 profiles for Certificate Revocation lists and the OCSP. C509 greatly decreases
certificate sizes and accordingly any protocol messages that include these certificates. At the
time of writing this research text, the section titled "C509 Online Certificate Status Protocol" has
no content, just a "TODO". This research is in contact with the authors and aims to contribute
to the C509 OCSP section in that internet draft with the lightweight OCSP profile proposed in
this research.

Boudagdigue et.al, 2020, Cluster-based certificate revocation in industrial IOT networks us-
ing Signaling game [20] investigates a new distributed certificate revocation protocol propos-
ing cluster-based certificate revocation mechanism for IIoT networks that utilizes game theory.
The proposal sets up an IoT infrastructure in a way that it is a community of member nodes,
where there is a community leader who uses a form of a game to perform the renew of cer-
tificates for the well behaving member nodes and revoke the certificate of malicious member
nodes. Boudagdigue uses the Perfect Bayesian Equilibrium, for the community leader to be
able to quickly and accurately revoke the untrusted member nodes and accordingly enhancing
the security of the infrastructure. This research thinks that mainly the idea of cluster-based
revocation could be an interesting approach when employed for resource constrained environ-
ments, utilizing the community of the constrained nodes to perform the revocation information
without the involvement of external entities or protocols.

Duan, Li and Li, Yong and Liao, Lijun, 2018, Flexible certificate revocation list for efficient
authentication in IoT [21] proposes two novel lightweight CRL protocols that are equipped
with maximum flexbility targetting constrained IoT settings. Their proposal use the concepts
of Merkle hash tree and the Bloom filter, by leveraging the latter they were able to achieve lower
RAM and bandwidth consumption compared to the usage of conventional CRLs. This research
is aware of the problems with CRLs and constrained environments and finds that the findings
of [21] aren’t clear on how they handle the scalability factor of CRLs, as in the continuous
expansion of the CRL database, which would not be possible to handle on a constrained device.





3 Methodology
The chapter firstly presents the approach taken to perform the research throughout this thesis
project in section 3.1, then it describes the communication scenario adopted by the research
in section 3.2. Sections 3.3, 3.4, 3.5 and 3.6 outline the protocol analysis phase of the research
methodology with the goal to acquire insights that will then serve as the foundation for the De-
sign phase. AS the research proposes changes to standard communication protocols, section 3.7
will discuss how the research specifies security considerations for its proposal.section 3.8 will
demonstrate the experiment setup, hardware and technology stack, and the planned measure-
ments to be acquired by the research.

3.1 Research Approach

Figure 3.1: Approach taken to perform the research

Figure 3.1 shows the approach taken to perform the research. The research firstly performs a
background study and literature review of surrounding work done relevant to the topic and
problem statement. This study creates a foundation for the research work and contributes to

15
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solving the problem statement by compiling and presenting relevant information with respect
to the topic. chapter 2 - "Background" will include the compiled knowledge.

Concluding the background study and literature review, the research identifies potential pro-
tocols to be analysed, the goal of the analysis is to derive insights which will then be used to
propose an approach to solve the problem statement. The analysis is presented in section 3.3,
section 3.4 and section 3.5. The research maintains the scope by considering a specific commu-
nication scenario discussed in section 3.2 - "Adopted communication scenario".

The research utilizes the acquired insights to design a proposal to solve the problem state-
ment, in the design; the research will consider the incurred overhead and the practicality of
the proposal. The research will specify security considerations for the proposed design, and
will use RFC3552-Guidelines for Writing RFC Text on Security Considerations[22] as a guide-
line for that. The design is presented in chapters 4 and 5. The research will then implement
the proposed design to acquire a working demonstration in preparation for evaluation. The
implementation, file contents and structure is broken down in section 6.1

The research will set up an experiment in order to evaluate the implemented design, the eval-
uation will consider performance metrics proposed by the thesis, as well as the invasiveness
and backwards compatibility of the proposed design with respect to the current state of the
altered protocols. The experiment setup along with the planned measurements are discussed
in this chapter as part of the methodology and data collection in section 3.8. The evaluation
and results are discussed in section 6.2 and section 6.3

The research will then conclude on its findings and propose future work to move forward
with the topic, hopefully using this research work as a solid foundation.

3.2 Adopted communication scenario

Figure 3.2: Communication scenario in the scope of the research

Figure 3.2 shows the communication scenario considered by the research, the scenario in scope
is that between a constrained client and a non-constrained server. The constrained client wants
to establish a session with a non-constrained server. The constrained client aims to acquire
revocation information regarding the server’s certificate, to handle the case where a malicious
entity can pose as a server using a compromised private key and a valid digital certificate due
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to the absence of mechanisms for acquiring certificate revocation information. Figure 3.2 will
serve as a foundational figure for the upcoming sections.

3.3 Analysis of the OCSP
The background study has yielded the OCSP as the protocol to analyse when it comes to ac-
quiring certificate revocation information the subsections below will expand on the analysis
and present the role of the OCSP in the research.

3.3.1 OCSP vs CRLs

The OCSP presents itself as an attractive option to acquire revocation information specifically in
the scope of the IoT. IoT aims to employ resource constrained nodes in the solution infrastruc-
ture, when considering CRLs there is an uncapped storage requirement overhead to acquire
revocation information. The constrained node needs to firstly store the CRL and then perform
frequent updates to its own CRL database, due to limited flash and ram; the previously men-
tioned functionalities do not lie within the capabilities of a constrained node. There can also be
other limitations such as power and energy as explained by [2].

The request/response functionality of the OCSP protocol makes it more suitable for trans-
porting and relaying the revocation information, the OCSP response is a time-stamped signed
response[7]. Accordingly, the response can be securely relayed to another endpoint in the case
that the latter is equipped with means to process and verify the signature of the OCSP response.

3.3.2 The role of the OCSP responder

In the approach proposed by this research, the OCSP is chosen as the means of acquiring re-
vocation information for a digital certificate in question. Figure 3.3 shows the structure of an
OCSP request, an OCSP client sends an OCSP request to an OCSP responder to query the re-
vocation status of a certificate in question. To acquire revocation information via the OCSP, an
OCSP responder is introduced to the communication scope.

Figure 3.3: OCSP request including nonce - generated by the OpenSSL[23] command line interface

The OCSP request can include a nonce, this ties an OCSP response to a specific request.
An entity verifying an OCSP response can cross reference an included nonce to an expected
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value, accordingly preventing replay attacks. It is important to note that an OCSP entity that
receives a request including a nonce will return a non-cached response, which can increase
round trip time. It is up to the governing operational policy to decide the period on which a
non-cached response is preferred over a cached one. Deciding on the period induces a trade-off
as a short period is more secure but requires more resources while a longer period can result in
not updating frequently enough and missing a revoked certificate.[7]

3.3.3 Analysis of an OCSP response

This subsection analyses the current specification of an OCSP response, looking at the included
headers and presenting insights regarding the importance of some headers and the redundancy
of others. The discussion in this section motivates the proposed profile in chapter 4. The dis-
cussion also accounts for the ideas mentioned in [19]. The text then outlines the size of the
OCSP response in its current ASN.1 profile by using the OpenSSL command line interface to
perform an OCSP request and receive an OCSP response.

Figure 3.4 shows the structure of an OCSP response, the reader should refer to this figure
when studying the arguments given by the underlying text. Headers surrounded by dashed
lines indicate optional headers in the structure, while those surrounded by red lines indicate
extensible ones.

Figure 3.4: Illustration of the OCSP response structure[19]

Figure 3.4 illustrates the ASN.1 structure of an OCSP response, [19] has presented some
arguments regarding the specification of the protocol, describing some of the included headers
to be redundant, referring to the utilised encoding scheme to be inefficient. The research in this
thesis agrees with the arguments and uses them as a solid foundation to deliver its proposal
for a more efficient encoding scheme, it is to be noted that [19] considered a different usage of
OCSP in their study, this difference will be highlighted in this analysis from the point of view
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of this research.

Discussing some points made by [19], the first one addresses the extensibility of OCSP, specif-
ically referring to the extensible responses header, [19] mentions that despite the extensibility
of OCSP, it is used almost exclusively to validate a single certificate. The mentioned thesis has
both the OCSP request and response in the scope of its study, meanwhile this thesis only stud-
ies the structure of an OCSP response, due to the scope of the communication scenario under
study.

Another argument made by [19] was concerning the presence of four different timestamp
fields; thisUpdate, nextUpdate, revocationTime and producedAt. The update fields
are made available for OCSP responders also known as VAs, if the trust policy of a client in-
volves checking certificates every τ hours (where τ denotes a time period, meanwhile the VA
only updates its information every 2τ hours, then adding the update fields doesn’t provide
any added functionality or security mechanism. For the scope of this thesis and the communi-
cation scenario under study, the client’s checking period is smaller than the period where VA
updates its information, therefore the update fields would not be included due to redundancy.
For the communication scenario in question for this research, the client doesn’t need to know
the revocation time as no policy is in place to handle certificates which were revoked before
or after a certain time. Accordingly, the producedAt header is sufficient for the client to be
able to verify the freshness of the OCSP response over a governing policy regarding tolerance
assigned to how fresh the OCSP response can be, an example would be a client that accepts an
OCSP response that has a producedAt of one month ago, while another one only accepts a
maximum of two days.

The last argument made by [19] which will be discussed in this thesis is one regarding the
inefficiency of ASN.1 itself, as each header states the number of bytes contained in the next hi-
erarchy level; the encoded message is riddled with byte counts which take a significant portion
of the message size on their own. The latter also means that encoding has to be performed in
reverse which is less efficient than a forward encoding scheme like CBOR, this is stated by [19]
and is also agreed on by this research.

This research contributes more points to the analysis of the OCSP response structure; the
header revocationReason is more like a nice-to-have than a need to have, firmware running
on constrained clients is all about efficiency and minimizing code size, if a constrained client
learns that a server’s certificate is revoked it will immediately discontinue the connection and
will not worry about the revocation reason.

Another optimization would be to remove the need of including the extensible certs, the
header is an optional which is included to help a client verify the signature of an OCSP re-
sponse, depending on the signer of the OCSP response, this extensible can contain either one
certificate (case of signing by the root CA) or a certificate chain. By configuring the signer of an
OCSP response out of band, client devices can be deployed with means to verify the signature,
an example would be to load the the signer’s public key in the device’s trust store.

Performing an OCSP request with the OpenSSL command line interface for a single certifi-
cate yielded an OCSP response with a size of 1162 bytes, this number will be compared in
subsection 6.2.1 with the message size results of the lightweight OCSP profile proposed by the
research.
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3.4 Choice of Encoding Algorithm
The background study has yielded CBOR[11] as a suitable encoding algorithm to be lever-
aged when entering the design phase of the research. CBOR will be used to propose a more
lightweight version of the OCSP response, in combination with the arguments made in sec-
tion 3.3.

3.5 Analysis of EDHOC
In the search for a method to transport certificate revocation information within resource con-
strained environments, the background study has yielded EDHOC as a solid option to be anal-
ysed, with the goal to acquire insights that will be used in the design process. This section
discusses EDHOC[4] as a key exchange protocol employed in the research, the section elabo-
rates on the role of EDHOC in the research and presents critical EAD items in preparation for
their usage in the design discussed in chapter 5 - Certificate revocation in EDHOC.

3.5.1 The role of EDHOC in this research

Considering the communication scenario adopted by the thesis, now including EDHOC as the
communication protocol used to establish the session. The two nodes are using EDHOC to
agree on session keys, in this case the constrained client is referred to as the EDHOC initiator,
while the the server is the EDHOC responder. With the goal of the thesis to introduce certifi-
cate revocation into IoT, EDHOC is used for means of transporting the revocation information.
EDHOC is also used to demonstrate a successful session establishment in the case of a good
certificate status, and also how the revocation functionality is successfully delivered when the
responder’s certificate is revoked and the client discontinues the protocol as a reason.

EDHOC includes EAD items which will be discussed more in the upcoming subsection,
the EAD items are used inside EDHOC to transport the OCSP response (referred to as staple)
relayed by the EDHOC responder. The thesis results will demonstrate the efficiency of this
approach in terms of imposed overhead by the proposed functionality and how intrusive the
proposal is to the current state of the protocol.

3.5.2 Critical EAD items

EDHOC defines critical and non-critical EAD items, where the sign of the EAD label determines
if an item is critical or not, a negative sign indicates that the EAD item is critical. Critical EAD
items affect the state of the protocol, if a critical EAD item is received and the endpoint cannot
recognize or process the item, it must send an error message and discontinue the protocol [4].

Critical EAD items can be used to affect the state of the protocol, if an endpoint receives a
critical EAD item which it doesn’t understand or sends a request for a critical EAD item and
doesn’t receive it in the next message, the endpoint discontinues the protocol and sends an
error message[4], Figure 3.5 shows the structure of the error message, it consists of an integer
label for an error code and ERR_INFO can contain a String type to give more information about
the error. Critical EAD items are leveraged in the design proposed by the thesis, chapter 5 will
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discuss this in further detail.

error = (

ERR_CODE : int,
ERR_INFO : any,
)

Figure 3.5: Structure of EDHOC Error Message[4]

3.6 Analysis of OCSP Stapling
The background study showed that OCSP stapling is worth looking into has it handles the
downfalls of using OCSP without stapling, the upcoming subsections will discuss the benefit
of using stapling in the communication scenario adopted by the thesis and present the role of
OCSP stapling in this research.

3.6.1 Stapling or no stapling

The communication scenario in the scope of this research demonstrates a constrained client try-
ing to establish a session with a non-constrained server, OCSP is utilised for the client to acquire
revocation information regarding the server’s certificate. For the client to perform the OCSP
query itself, it would require that it performs an OCSP request to a known OCSP responder,
then keep the connection alive. Resource constrained device can be limited in flash, Random
Access Memory (RAM), energy or power[2]. Accordingly, if there is an option to remove the
overhead from the constrained endpoint by delegating the task to another entity in the net-
work; that would be the recommended approach, this way making room for the constrained
endpoint to support other tasks and functionalities, or increase performance with larger allo-
cated buffer sizes.

The aforementioned delegation can be achieved by OCSP stapling, where the constrained
endpoint can ask the server to send its certificate and the OCSP response that includes the
revocation status of the server’s certificate, the OCSP response is referred to as the staple in this
context, hence the term; OCSP stapling. This removes overhead on the constrained node to
acquire revocation information.[8] The latter makes OCSP stapling the choice over no stapling
in the scope of this research considering constrained endpoints.

3.6.2 The role of OCSP stapling

The research employs the stapling functionality of the OCSP stapling for the previously men-
tioned reasons. The constrained client sends a stapling request to the non-constrained server,
the server accordingly performs the OCSP request and relays the OCSP response (Staple) to the
constrained node. What the staple includes and how it is transported is covered in chapters 4
and 5.
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3.7 Guidelines for specifying security considerations
The research proposes some changes to the current specification of some protocols in order to
achieve an added functionality, in the case of this research; it is the functionality of certificate
revocation. The specifications for internet protocols start off as an internet draft and then de-
velops into an Request for comments (RFC). When developing a communication protocol; a
very important aspect to consider is the security of the protocol. RFC3552 was created with
the purpose to both encourage document authors to consider security in their designs and to
inform the reader of relevant security issues[22].The research refers to the guidelines in [22] to
specify security considerations for the proposed designs. The two design chapters; chapter 4
and chapter 5 will discuss security considerations for each respective design.

3.8 Experiment
This section will present the experiment setup created to acquire the thesis’ results. The sec-
tion will then discuss the planned measurements for evaluation. The project file structure and
instructions to run the experiment will be outlined in sections 6.1 and 6.2.

3.8.1 Test platform and technology stack

This section will outline the hardware used throughout the research and motivation around
the choices. The section then presents the tools and software libraries used in the development
and implementation of the designs proposed by the research.

3.8.1.1 Hardware

To design an experiment that honours the constrained environment communication scenario,
the research employs IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) as a
relevant protocol used in the scope of the IoT[24]. When choosing a test platform, the approach
was to select a microcontroller that is equipped with a module that supports 6LoWPAN and is
accompanied with a well maintained software development kit.

Accordingly the nRF52840DK[25] was the chosen test platform, the board will act as the con-
strained node in the adopted communication scenario. The latter is equipped with Bluetooth
Low Energy (BLE), giving the possibility to communicate via Internet Protocol Version 6 (IPV6)
over BLE as a 6LoWPAN variant. The board is equipped with 1mb of flash memory and 256kb
of ram.

The platform for the non-constrained server is a Linux PC, this PC is the same one used for
the development environment, the latter is running Ubuntu 22.04. The PC is not equipped with
a 6LoWPAN module, accordingly the BLE communication is required to be routed from the
nRF board to the PC. A Raspberry Pi 3B+ running a router advertisement daemon is employed
as a BLE router, the Raspberry Pi is running on Raspberry Pi OS with kernel version 5.15. The
PC also runs the OCSP responder entity started from the OpenSSL command line interface.

The choice for measurement tool is the Joulescope JS110[26], this is a precision dc energy
analyzer. The specifications include 250 kHz bandwidth with 2 million samples per second,
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14-bit, simultaneous current and voltage. The equipped bandwidth ensures that a clear delta
in power consumption can be observed when running the experiments with the approach pro-
posed by the research vs without. As the main focus of the research with respect to evaluation
is to report the overhead of its proposal.

The tool is accompanied with a software to visualize the measurements, as well as a GitHub
repository[27] containing python scripts that can be used in post processing. The sensor ports
of the Joulescope are electrically isolated from the USB ensuring there’s no noise induced by
the USB in the measurements. The Joulescope comes fully calibrated from the factory, and the
calibration was verified as a pre-cursor to running the experiment.

3.8.1.2 Tools and software libraries

The programming languages used in the research are C, C++, and bash. These choices are
enforced by the software libraries used when implementing the approach proposed by the
thesis, bash is used for scripting on the Linux PC.

Library/Tool version
Zephyr 3.1.0
Openssl 3.0.5
cmake 3.22.1
make 4.3
gcc 11.3.0

Table 3.1: Versions of tools and software libraries used in the research

Table 3.1 shows the versions of tools and software versions used throughout the develop-
ment in this research. The EDHOC implementation used as a foundation in the research[28]
runs EDHOC on Zephyr as an Real-time Operating System (RTOS) and uses Make and CMake
buildsystems for building and GCC for compiling binaries. OpenSSL was chosen by the re-
search to create CAs and client certificates, also to run OCSP responders, the choice was mo-
tivated by OpenSSL’s open source code, and command line interface assisting in the develop-
ment.
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3.8.2 Experiment setup

Figure 3.6: Illustration of the experiment setup

Figure 3.6 shows the hardware connections employed to run the experiment, the nRF is pow-
ered by the external 5v supply on the Joulescope, the Joulescope is connected to the PC. The
Raspberry Pi is configured with a static IPV6 address and is connected via Ethernet to the PC,
the nRF is configured with a static IPV6 address and is connected to the Raspberry Pi over
BLE. The Raspberry Pi is powered via USB by the PC. The Joulescope is powered by the Power
supply and has built-in circuit to route power to a connected device via USB. The Joulescope is
also connected via USB to the PC for visualizing the measurements.

The measurement process starts with the NRF turned off, when the latter is turned on it
performs a run of the EDHOC protocol and then goes to power saving, it is then manually
turned off to prepare for the next measurement.

3.8.3 Planned measurements

The research will measuring the average power consumption in case of running EDHOC with
revocation and without revocation, measuring deviation over 20 iterations of each, the average
difference is the average overhead in power consumption. Graphs will show 20 iterations of
each case.
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The research uses the Joulescope to measure the average power consumption over 20 it-
erations in the case of running EDHOC with certificate revocation, and in the case of plain
EDHOC(without revocation - without the added functionality proposed by the research). The
number of iterations was chosen as 20 as a baseline, after looking at the measurements in their
same respective cases, it could be seen that the variance was very small, making 20 iterations
of each case to be sufficient.

The research will use the acquired measurements to report on the overhead incurred by the
research’s proposal to solving the problem statement. With the goal being to achieve the re-
quired functionality of certificate revocation without introducing a huge overhead with respect
to message sizes, protocol time and average power consumption.





4 Design - Lightweight profile for OCSP
The chapter will introduce the Lightweight profile for OCSP proposed by the research, start-
ing from the challenges to delivering the proposed profile. section 4.1 will present the ASN.1
to CBOR converter proposed by the research, and how the converter is integrated in a non
intrusive manner to the OCSP in order to mantain backwards compatibility and the current
specification of the OCSP. section 4.2 will present the details of the profile proposed by the re-
search and discuss the choice of each header in the profile.subsection 6.2.1 will demonstrate
an example of the lightweight profile and compare message sizes to the current specification
of OCSP and related work.section 4.3 will specify security considerations with respect to using
the new Lightweight profile in production grade infrastructures.

4.1 ASN.1 to CBOR converter
The section will outline the concept behind the ASN.1 to CBOR converter and discuss chal-
lenges surrounding integration into the te current specification of OCSP, the text will then il-
lustrate the conversion algorithm and outline the conversion rules proposed by the research.

4.1.1 Extending the current specification of OCSP

The thesis proposes a lightweight profile for an OCSP response as part of the contributions of
the research to achieve certificate revocation in IoT. The proposed profile is discussed in the
upcoming section. To maintain the applicability and practicality of the proposal, the research
aims to present a vector for integrating the new profile to be functional in the current imple-
mentations of OCSP. The research also considers backwards compatibility in its integration,
maintaining the current functionality of the protocol while also extending it to include the pro-
posed profile in the thesis.

4.1.2 Challenges surrounding integrating the converter

Studying the conversion problem, the research incorporates OCSP stapling into the key ex-
change protocol between a constrained client and a non-constrained responder.section 3.6 dis-
cusses OCSP stapling in more detail and describes its role in the research. The OCSP response
is a signed response, in the case of OCSP stapling where a server performs the OCSP request
and relays the OCSP response to the client, since the client doesn’t trust the responder by na-
ture of the communication scenario; the OCSP response needs to maintain the signature of the
OCSP responder (depending on the implementation of OCSP the signer can also be different,
an example would be to have the signer as the issuer of the OCSP responder’s certificate), this
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accordingly means that the conversion of the OCSP response needs to happen somewhere in
the implementation of the OCSP entity itself.

To maintain backwards compatibility, the request for the new OCSP response profile needs
to be signaled to the OCSP entity, the thesis proposes two methods as options to achieve this;
using Hypertext Transfer Protocol (HTTP) the content-type can be set to signal for a response
structure that uses the new profile, where the OCSP entity can check the content type and
accordingly set the logic to perform the conversion before signing the response. Another
method to achieve this is through using preferredSignatureAlgorithm in the OCSP re-
quest extension[7], a new signature algorithm label can be registered to signal to the OCSP
responder that the new profile of OCSP response is requested to be returned and not the cur-
rent one.

The conversion is performed on the tbsResponse which is the OCSP response data struc-
ture that is going to be signed, the idea is to introduce the converter in a way that is least in-
trusive in terms of software libraries that implement the protocol. The tbsResponse contains
ASN.1 Data structures, at the time of writing this thesis there aren’t clear rules on converting
an ASN.1 data structure to a CBOR one, this thesis proposes some conversion rules in the scope
of the OCSP response headers that are chosen to participate in the new proposed profile.

4.1.3 The conversion algorithm

Figure 4.1: Illustration of the conversion algorithm in the case of signaling the OCSP responder for the
lightweight profile

Figure 4.1 shows the conversion algorithm for converting the legacy OCSP response structure
into the new Lightweight profile proposed by the research. The signaling is performed either
via the HTTP content-type header specifying content-type with a new registered label referring
to the lightweight profile, or using the OCSP request extension preferredSignatureAlgorithm
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by setting a new signature algorithm label that refers to the lightweight profile.

The research proposes some conversion rules for the OCSP response headers chosen to par-
ticipate in the new profile, where the timestamp fields in ProducedAt are extracted from the
ASN.1 structure encoded as CBOR time, nonce is extracted from the OCSP repsonse extensions
and is encoded as a byte string, the fields inside certID are seperately extracted from the ASN.1
structure and encoded together as a CBOR array. The other chosen headers are considered by
the research to be very trivial to convert into a CBOR encoded version of themselves.

4.2 OCSP Profile for resource constrained environments

tinyOCSP_response = (

response_type : unsigned int
responderID : bytestring
ProducedAt : CBOR Time
nonce : bytestring
certID : certID
certStatus : unsigned int
)

Figure 4.2: Concise Data Definition Language (CDDL) of the Lightweight profile for the OCSP response pro-
posed by the research

Figure 4.2 illustrates the Lightweight profile for the OCSP response proposed by the research,
the illustration is motivated from the analysis phase of the research when the OCSP response
was analysed and the acquired insights were utilized to propose the new profile.

The responderID is transported as a byte string and is necessary for the entity verifying
the OCSP response to know which OCSP responder signed the response. ProducedAt is used
for verifying that the time of producing the response is fresh with respect to a governing policy
surrounding the operation of the verifying entity, in the scope of this research; the verifying
entity is the constrained client. nonce is checked by the verifying entity in the case a fresh
OCSP response was requested, if nonce doesn’t match an expected value; the response can be
treated as a form of replay attack. certID is checked by the verifying entity and is matched
to the expected certID, in the scope of this research and adopted communication scenario; the
expected certID would be that of the non-constrained server.certStatus contains the revoca-
tion status of the certificate, an entity processing this response checks the status of the certificate
and discontinues session establishment in the case that the certificate is revoked. The research
finds the proposed headers as the necessary requirements to achieve the certificate revocation
functionality in the scope of resource constrained environments.
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4.3 Security considerations
The section uses RFC3552 [22] to specify security considerations for the proposed lightweight
profile. The upcoming sections will discuss the relevant potential attack vectors with respect
to the proposed profile.

4.3.1 Denial of Service

Denial of service is always a potential attack vector, a malicious entity gaining knowledge about
favourite OCSP responders in a network can launch a denial of service on the network’s OCSP
responders, denying the acquiring of certificate revocation information. A proxy between the
entity performing the OCSP request and the OCSP responder can either deny the request from
ever reaching the responder or do the same to the response with respect to the entity that
performed the OCSP request. This attack vector is there in the current profile of the OCSP and
is in no way accentuated by the lightweight profile proposed by this research.

4.3.2 Man in the Middle Attack

The attack here refers to a malicious entity that is proxying the OCSP request/response traffic,
the malicious entity can act as an OCSP responder and gain access to the metadata of every
device performing an OCSP request to it, but the attack stops there as the malicious entity
would need to compromise the private key of the spoofed OCSP responder in order to be
able to send back forged OCSP responses legitimately signed with the compromised private
key. The proposed lightweight profile maintains the signature value in the response, an entity
receiving the lightweight profiled response must first verify the signature and ensure that it is
from a trusted OCSP responder.

4.3.3 Replay Attack

A replay attack is an attack where a request/response is saved for later use, when the saved
message is reused in a communication; that is considered a form of a replay attack. In the scope
of the OCSP, a replay attack can be a malicious entity saving an OCSP response containing
a good certificate status and using it after the certificate in question has been revoked. The
lightweight profile makes use of the nonce header, where a nonce ties a response to a specific
request. Therefore the entity performing the OCSP request should include a well generated
nonce in the request and should expect it in the OCSP response, if it’s not present or if the
header is present but the value is different then that should be treated as a form of replay
attack.



5 Design - Certificate revocation using
EDHOC

This chapter will present how the research Incorporates Certificate Revocation leveraging ED-
HOC as a lightweight key-exchange protocol. section 5.1 introduces EDHOC into the commu-
nication scenario adopted by the research. section 5.2 presents the design for incorporating
certificate revocation into EDHOC. section 5.4 presents how the proposed design can be uti-
lized to achieve an added functionality of synchronising the realtime clock of the constrained
device. section 5.5 outlines the added requirements from the constrained device when utiliz-
ing EDHOC as proposed by the research.section 5.6 will specify security considerations with
respect to how the research utilizes EDHOC in the overall design.

5.1 EDHOC communication scenario
In the scope of the EDHOC communication adopted by the research, the constrained node is
an EDHOC initiator and the non-constrained node is an EDHOC responder. The constrained
initiator wants to acquire revocation information regarding the responder’s certificate. The
accompanying challenges of the latter present themselves as the following: (1)acquiring re-
vocation information in a secure manner (2)transporting revocation information (3)verifying
revocation information.

The underlying text will present a vector to overcome the challenges and achieve the re-
quired functionality, the proposal leverages OCSP as a means to acquire certificate-revocation
information and employs EDHOC for transport.

5.2 Incorporating certificate revocation
This section will present the staple-request and staple-response EAD items used for transport-
ing revocation information in EDHOC, the text will then demonstrate how these items are used
to transport the revocation information.

5.2.1 Staple-request in EDHOC

Figure 5.1 shows the expansion of an EAD item in CDDL[29] format with staple-request
encoded as a byte string and placed in ead_value. As staple-request is the value of the
EAD item, this EAD item is referred to by the text as the staple-request EAD item. The
staple-request is a critical EAD item proposed by this research, it is added into EDHOC
Message 1 by the EDHOC initiator, it contains a trusted OCSP responder list which is used by
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the EDHOC responder to determine which OCSP responder to query for the revocation infor-
mation, it also contains a parameter called fresh to indicate whether a fresh OCSP response is
required or if a cached one is sufficient. An EDHOC responder that receives staple-request
with the fresh parameter set to True uses G_X (which in EDHOC is the initiator’s ephemeral
key) as a nonce in the OCSP request, accordingly the OCSP entity would include that nonce in
the response. The OCSP response with the nonce would then be relayed by the responder in
the staple-response item, the initiator can verify the nonce and thus protect itself against replay
attacks.The integer label for the EAD item is negative signed to mark the latter as a critical EAD
item.

ead = (

ead_label : int,
ead_value : bstr(staple − request)
)

staple − request = (

responderID_list : bstr,
? f resh : CBOR True(0xF6)
)

Figure 5.1: CDDL of EAD value in the staple-request EAD item

The size of the trusted responder list determines the size of the staple-request item, as
the fresh parameter is just a one-byte CBOR True or False.

In the case of a resource constrained setting; the trusted responder list can be transported
as null to indicate a responder list that has been agreed upon out of band. Otherwise the list
entries need to be formatted in a manner that the entity receiving the staple-request item
can reach out to the responders on the list. By transporting the list as null, it is encoded as a
CBOR Null and would take up one byte of space, making the total size of the CBOR-encoded
staple-request EAD item to be 4 bytes (one byte for the integer label in ead_label and 3
bytes for ead_value.

5.2.2 Staple-response in EDHOC

The staple-response is a critical EAD item proposed by this research, it is added into ED-
HOC Message 2 by the EDHOC responder after receiving a staple-request EAD item in
EDHOC Message 1, the responder constructs the staple-response item after acquiring an
OCSP response from the OCSP responder. chapter 4 presented the lightweight profile of the
OCSP response proposed by this research. The latter is then encoded as a bytestring and added
into the ead_value field of the staple-response EAD item.
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ead = (

ead_label : int,
ead_value : bstr(staple − response)
)

staple − response = (

ResponseData : tinyOCSP_response
SignatureVal : bstr
SignatureAlg : unsignedint
)

tinyOCSP_response = (

response_type : unsignedint
responderID : byteString
ProducedAt : cborTime
nonce : bytestring
certID : certID
certStatus : unsignedint
)

Figure 5.2: CDDL of EAD value in the staple-response EAD item

Figure 5.2 shows the staple (OCSP response) after it has been encoded into the value field
of an EAD item, the latter then becomes the staple-response EAD item, the integer label
for the EAD item is negative signed to mark the latter as a critical EAD item. The CDDL[29]
format is used to describe the expansion of the EAD item.
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5.3 The Certificate Revocation Process

Figure 5.3: Illustration of the certificate revocation process incorporated in EDHOC
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Figure 5.3 shows the constrained EDHOC initiator and the non-constrained EDHOC responder,
the process starts when the initiator constructs the staple-req EAD item and sends it in
EDHOC Message 1. The proposal leverages OCSP stapling where the initiator asks the EDHOC
responder for its certificate as well as a staple, the latter refers to an OCSP response that contains
the revocation status of the responder’s certificate. A staple request is transported in EDHOC
Message 1, the responder receives the message and processes the staple request.

On processing the staple request, the EDHOC responder becomes an OCSP client and per-
forms a request to an OCSP responder (VA) that is trusted by the EDHOC initiator, information
regarding trusted OCSP responders is relayed in the staple request sent in EDHOC Message
1 by the initiator. The EDHOC responder accordingly receives a response from the VA that
contains the revocation information required by the EDHOC initiator. The responder creates a
staple response and transports it in EDHOC Message 2.

The constrained initiator receives EDHOC Message 2 which should contain a staple re-
sponse, the initiator should return an error message and EDHOC fails in the case where ED-
HOC Message 2 doesn’t contain a staple response. The initiator processes the staple response
and acquires the revocation status of the responder’s certificate, the initiator sends an error
message and EDHOC fails in the case where the responder’s certificate is revoked. The initia-
tor proceeds to send EDHOC Message 3 after successfully processing the staple response and
acquiring a good certificate status.

5.4 Realtime clock synchronisation for the constrained
initiator

Using the staple-request EAD item, the initiator can synchronise its Realtime Clock (RTC).
An unsynchronised RTC can expose the initiator to numerous replay attacks, in the case of
certificate revocation; an attacker can use an old OCSP response that shows a good certificate
status before the certificate in question was revoked, as a result an attacker would manage to
authenticate itself as a responder to the constrained initiator.

The staple-request EAD item contains the fresh parameter which can be used by the initiator
to ask for a fresh OCSP response, whereas otherwise it would get a cached one. As the OCSP
response is a timestamped response, the initiator can use the timestamp to synchronize its RTC.
Employing this method of time synchronization; an initiator running EDHOC with certificate
revocation using the staple-request item can synchronize its RTC and add a layer of protection
against replay attacks.

5.5 Processing the OCSP Staple
The EDHOC initiator constructs the staple-request and encodes it as a CBOR byte string,
the trusted OCSP responder list is either loaded from the device’s trust store or is then set to
NULL to indicate a responder list that has been agreed upon out of band. The EDHOC initiator
then constructs an EAD item setting ead_label to a registered negative signed integer label,
and adding the staple-request bytestring as ead_value. The constructed EAD item is
then added as a CBOR item to EAD_1 field in EDHOC Message 1.
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The initiator waits for EDHOC Message 2, CIPHERTEXT_2 is decrypted and can process
EAD_2. On processing EAD_2, if the staple-response EAD item is not found then the ini-
tiator should send an error message and discontinue the protocol, this is also considered as the
specified behavior for dealing with critical EAD items in EDHOC. In the case the staple-response
EAD item is found, the initiator will decode ead_value and perform the signature verification
using signatureval and the responder’s public key and the OCSP response structure. After ver-
ifying the signature, the responder must continue verifying the values present in other headers
of the response structure, this is done as a security measure. ProducedAt must be within the
range set by the governing policy with respect to accepting OCSP responses within certain time
stamps. If staple-request contained was constructed with Fresh set to true then the nonce
in the OCSP response structure must match g_x which is the responder’s ephemeral public key.
certID is checked to ensure that the received respsone refers to the certificate in question, in
this case it would be the certificate of the responder. Lastly certStatus is checked, if the
status has the value revoked then the initiator would send an error message and discontinue
the protocol, otherwise it will move forward with the EDHOC exchange.

ProducedAt must be within the governing policy for the operation of the EDHOC initiator
regarding acceptance period for revocation information. If the initiator included fresh in
the staple-request; then nonce must equal g_x or the freshness criteria has not been satisfied
and this can be treated as a form of replay attack. certID must match that of the EDHOC
responder otherwise the revocation information should be considered invalid. certStatus
must give a good certificate status, the initiator must discontinue the protocol if certStatus
has the integer label signifying a revoked certificate.

The protocol can continue normally on a successful verification, the initiator constructs ED-
HOC Message 3 and sends it to the EDHOC responder. An error message is sent in the case of
a verification failure and the protocol is discontinued.

5.6 Security considerations
The section uses RFC3552 [22] to specify security considerations for the proposed method to
perform Certificate Revocation. The upcoming sections will discuss the relevant potential at-
tack vectors with respect to the proposal.

5.6.1 Denial of Service

Denial of service can happen anywhere in the proposed certificate revocation vector, the ses-
sion establishment can be denied by denying the EDHOC responder from receiving the OCSP
response or performing the OCSP request. A denial of service can also come in the form of
denying the communication between the EDHOC initiator and responder, as a result denying
the session establishment. Due to the usage of critical EAD items, another denial of service
would be a Man in the Middle Attack vector which is able to send an EDHOC message 2 that
doesn’t contain the critical EAD item and by design the initiator would then discontinue the
protocol.
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5.6.2 Man in the Middle Attack

An adversary proxying the communication between the EDHOC responder and initiator can
view the contents of the staple-request EAD item in EDHOC message 1, from that the
adversary can acquire knowledge regarding the usage of the Fresh parameter by the EDHOC
initiator. The acquired knowledge can then be used as part of a vector for a Replay attack,
where now the adversary knows how often the EDHOC initiator uses the Fresh parameter
in the staple-request. This could be mitigated by specifying shorter periods for setting
the Fresh parameter. The mitigation would be on the cost of increasing the total time of the
EDHOC exchange, as the OCSP responder would need to create a new OCSP response with
the new nonce and not a cached one.

5.6.3 Replay Attack

A replay attack vector with respect to the certificate revocation approach proposed by the re-
search would be that where an adversary has acquired an OCSP response regarding the le-
gitimate EDHOC responder’s certificate, and then the adversary was able to compromise the
private key of the EDHOC responder and can now use the saved valid OCSP response to pass
the revocation check done by the EDHOC initiator. This is mitigated by the proposed method
by setting the Fresh parameter in the staple-request. This asks the EDHOC responder
to create an OCSP request using a nonce known by the EDHOC initiator, the EDHOC initiator
then checks for the nonce in the received stapled OCSP response. If the nonce is not there, it
will discontinue the protocol, mitigating the replay attack.



6 Results and Conclusion
This chapter will first outline the implementation results and explain the project file structure in
section 6.1. section 6.2 will then present the steps for recreating and executing the experiments,
and then discuss the acquired results. The research will then conclude and summarise on the
results, and propose future work that would use this research as a solid foundation.

6.1 Implementation
The implementation was divided into 2 phases; the first phase was to implement the Lightweight
profile presented in chapter 4, this was divided into two sub-phases of firstly implementing the
conversion of the OCSP response to the new profile and then implementing the proposed in-
tegration vector that maintains backwards compatibility with the current specification of the
OCSP protocol at the time of writing this Thesis.

The second phase; implementing the staple-response and staple-request EAD items
presented in chapter 5 - Certificate Revocation using EDHOC. The implementation includes
defining the EAD items and adding them into the EDHOC messages, and adding logic to pro-
cess the latter. The implemented processing of the EAD items includes performing an OCSP
request signaling for the lightweight profile, processing the OCSP response and appending the
staple into the staple-response EAD item.

The goal of the previous implementation phases was to achieve a functional demonstration
of the approach proposed by the research for performing Certificate Revocation in a resource
constrained environment. The implemented demonstration is then utilized in the experiment
outlined in section 3.8 to acquire the research’s results.

openssl-tinyOCSP
uoscore-uedhoc

Figure 6.1: Highest level of the project implementation structure

The following sections will outline the results of each phase, Figure 6.1 shows the highest
level of the project folder structure.

6.1.1 Lightweight Profile for OCSP

The approach outlined in chapter 4 is implemented as an extension to the OpenSSL library ver-
sion 3.0.5, it uses the content-type method to signal the OCSP entity for the new proposed
profile, and implements the presented conversion rules and algorithm. The implementation
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is a working proof of concept of the design proposed by the research and serves as a strong
foundation to be refactored and turned into production code.

6.1.1.1 Conversion to the Lightweight Profile

openssl-tinyOCSP
openssl-3.0.5

apps
ocsp.c

Figure 6.2: Path to the file changed in OpenSSL 3.0.5 to include the implementation of the OCSP conversion
to the proposed Lightweight Profile

Figure 6.2 shows ocsp.c changed in the OpenSSL library to include the implementation of the
OCSP response conversion to the Lightweight Profile proposed by the research. The ocsp.c
governs the functionality of an OCSP responder that is run on the command line interface
using the OpenSSL library. ocsp.c was the main file that was changed, some other files in
the library were changed as a normal process of extending the library to support the added
changes in ocsp.c.

Added code is marked with a Lightweight-Profile comment and additional comments
inside the file explain the functionality of the added code. Appendix A.1 shows the implemen-
tation of the OCSP response conversion to the lightweight profile, the listing shows the main
function used in the conversion.

The upcoming text will present the signaling implementation and provide an example of an
OCSP response with the Lightweight profile proposed by the research, the response is acquired
by calling the presented implemented functions.

6.1.1.2 Signaling a conversion request to the OCSP

openssl-tinyOCSP
openssl-3.0.5

apps
lib

http_server.c
ocsp.c

Figure 6.3: Path to the files changed in OpenSSL 3.0.5 to include the implementation of the signaling method
for the proposed Lightweight Profile

Figure 6.3 shows http_server.c and ocsp.c changed in the OpenSSL library to include the
implementation of signaling the OCSP to perform the Lightweight Profile conversion proposed
by the research. The http_server.c contains added functions for setting content-type in
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the HTTP request, the file also contains some other workarounds to achieve the signaling while
maintaining backwards compatibility. The file ocsp.c contains added flow control to act on
whether a signal for the lightweight profile has been received or not. Added code is marked
with a Lightweight-Profile comment and additional comments explain the functionality
of the added code. http_server.c and ocsp.c were the main files that were changed to
include this functionality, some other files in the library were changed as a normal process of
extending the library to support the added changes in ocsp.c.

Listing 6.1 shows the code snippet added into the HTTP exchange flow of OpenSSL, it shows
the usage of the HTTP content-type header, by setting it in the OCSP request; the imple-
mentation can check for it in the HTTP exchange. The return value 3 is then matched in ocsp.c
to signal the conversion request to the OCSP responder entity.

Listing 6.1: Code snippet added into the HTTP exchange flow of the OpenSSL OCSP library

1

2 //check for tiny response request via content type
3 if (OPENSSL_strcasecmp(key, "Content-type") == 0)
4 {
5 if (OPENSSL_strcasecmp(value, "application/ocsp-request-tiny")

== 0)
6 {
7 printf("Received Request for Tiny(Cbor) Response\n");
8 ret=3;//signal for tiny request
9 }

10

11 }

Appendix A.2 shows an example of the Lightweight Profile of the OCSP response acquired as
a result of performing an OCSP request with signaling for the conversion via the implemented
functions.

6.1.2 Certificate Revocation with EDHOC

The implementation uses Stefan Hristosov’s uoscore-uedhoc library [28] as a foundation for
implementing the concepts proposed by the research in chapter 5.

The implementation first started by making the EAD field of the EDHOC messages available
to the application, this was done by extending the functions that run the EDHOC responder
and EDHOC initiator to include a callback to a function that can be defined by the application
level to process the EAD field in the EDHOC messages, application level here is the level above
the EDHOC protocol. Listing 6.1 shows the main calling function where the callback function
is added.

Listing 6.2: Extending edhoc_responder_run() to include a callback function process_ead_1() that
can be defined by the application

1 enum err edhoc_responder_run_extended_ead_proc(
2 struct edhoc_responder_context *c,
3 struct other_party_cred *cred_i_array, uint16_t num_cred_i,
4 uint8_t *err_msg, uint32_t *err_msg_len, uint8_t *ead_1,
5 uint32_t *ead_1_len, uint8_t *ead_3, uint32_t *ead_3_len,
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6 uint8_t *prk_out, uint32_t prk_out_len,
7 enum err (*tx)(void *sock, uint8_t *data, uint32_t data_len),
8 enum err (*rx)(void *sock, uint8_t *data, uint32_t *data_len),
9 enum err (*process_ead_1)(struct edhoc_responder_context *c_1, uint8_t *

data_ead_1, uint32_t *data_ead_1_len))
10

11 {
12 return edhoc_responder_run_extended_2(c, cred_i_array, num_cred_i,
13 err_msg, err_msg_len, ead_1,
14 ead_1_len, ead_3, ead_3_len,
15 prk_out, prk_out_len, NULL, NULL,
16 NULL, NULL, tx, rx, process_ead_1);
17 }

Appendix B.1 shows the definition of the process_ead_1() function, the function per-
forms the processing of the staple-request item found in EAD_1 and then accordingly
generates an lightweight profiled OCSP request using the implementation done by the re-
search, then the function encodes the received OCSP response as the staple and constructs
staple-response and adds it into EAD_2.

There are other added changes in the library to support the implementation of the proposed
design. Figure 6.4 shows some of the directories that have been changed to include functions
that support the design, the reader can refer to the commented code for their understanding.
The directory named responder_extended holds the implementation for the extended ED-
HOC responder that processes staple-request and constructs staple-response. The di-
rectory initiator_extended holds the implementation for the extended EDHOC initiator
that sends staple-request and processes staple-resp to acquire the relayed certificate
revocation information.

uoscore-uedhoc
samples

linux_edhoc
responder_extended

zephyr_edhoc
initiator_extended

Figure 6.4: Path to the folders including the implementations of EDHOC responder and EDHOC initiator that
are run in the experiment and proof of concept demonstration

The implemented proof of concept demonstration shows the applicability of the certificate re-
vocation approach proposed by the research. The demonstration starts by running an EDHOC
exchange with the implemented certificate revocation approach in the case of a valid EDHOC
responder certificate, the certificate is then revoked by the CA and the EDHOC exchange fails
when run the second time due to a revoked EDHOC responder certificate.
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6.2 Evaluation
6.2.1 Message Sizes - Lightweight Profile for the OCSP

Table 6.1 shows the OCSP response size of the lightweight profile proposed by the thesis com-
pared to that of the current state of the OCSP. The lightweight profile achieves a reduction of
76.4% from the message size of the current profile of the OCSP response.

OCSP profile OCSP Response size (bytes)
OCSP profile RFC[6960] [7] 1162
Lightweight Profile(This research) 274

Table 6.1: Comparison of the OCSP response message size in its current profile [7] vs the Lightweight profile
proposed by the research

Table 6.2 shows the size utilized by each header in the Lightweight profile proposed by the
research, the total size shown is the size before appending the signature calculated on the re-
sponse structure.

Header Size (bytes)
response_type 1
responderID 94
ProducedAt 21
nonce 34
certID 48
certStatus 1
Total Size 199

Table 6.2: Header sizes of the Lightweight OCSP response profile proposed by the research

Table 6.3 breaks down the elements of the total size of the OCSP response structure after en-
coding and appending the signature value and the signature algorithm. Encoding the structure
as a byte string adds two bytes, adding the encoded signature adds 72 bytes and the signature
algorithm label adds one byte, bringing the total size of the complete OCSP response structure
to be 274 bytes.

signatureAlgorithm(1 byte) signatureVal (72 bytes) bytestring encoding (2 bytes) lightweight structure (199)

Table 6.3: Total size of the proposed lightweight profile after appending the signature and encoding

6.2.2 Experiment

This section outlines the steps to recreate and execute the experiment. The section then presents
the results of the experiment and accordingly the results of the undertaken research.
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6.2.2.1 Experiment Execution

The OpenSSL[23] toolkit provides means of setting up a certificate authority using its command
line interface, the certificate authority can then sign a certificate signing request for an OCSP
entity’s certificate, the OCSP entity is also created from OpenSSL’s command line interface.

Certificates generated for all entities constituting this research contain 256-bit Elliptic-Curve
(EC) keys using the prime256v1 algorithm. This is enforced for compatibility with the pro-
tocols used in the research. The prime256v1 algorithm is compliant with the NIST key size
recommendations on Elliptic-Curve Digital Signature Algorithm (ECDSA)[30].

An OCSP responder that is set up with EC keys is equipped to sign OCSP responses out-
putting an ECDSA signature, accordingly an entity that is performing the function of verifying
an OCSP response needs to be able to verify ECDSA signatures. The entity that will perform
the verification in this scenario is the constrained initiator.

The nRF52840dk is flashed with the firmware residing in ./uoscore-uedhoc/samples/zephyr_-

edhoc/initiator_extendedand a Linux PC is made to run the program in ./uoscore-uedhoc/samples/zephyr_-

edhoc/initiator_extended. These directories are found in the project files included with the re-
search.

A version of OpenSSL that supports the lightweight profile is built by following the instruc-
tions included in ./openssl-tinyOCSP and an OCSP responder entity is launched from the com-
mand line interface of the OpenSSL version that has just been built.

The hardware is connected as illustrated in Figure 3.6-subsection 3.8.2 and the experiment
can be started by turning on the nRF52840dk and observing the output of the EDHOC respon-
der entity running on the Linux PC. The nRF board is turned off after every complete ED-
HOC exchange and the measurements are logged on the Joulescope. The research performed
this process for 20 iterations of EDHOC with the proposed certificate revocation approach.
For running plain EDHOC, the research flashed the nRF board with the firmware residing in
./uoscore-uedhoc/samples/zephyr_edhoc/initiator which doesn’t contain the added funtions im-
plemented by the research. The same is done in terms of measurement, the research ran 20
iterations of the case of running plain EDHOC. The acquired results are presented in the up-
coming section.

6.2.2.2 Experiment Results

Figure 6.5 shows the average power consumption over the 20 iterations of running each case of
the experiment, a box plot was chosen as the visualisation method to visualise the mean value
over 20 iterations and use that for calculating the power consumption overhead. The results
show that compared to plain EDHOC the average power consumption of the Certificate Revo-
cation approach proposed by the research is only 0.46% more than running EDHOC without
the certificate revocation function.
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Figure 6.5: Comparison of the average power consumption when running Plain EDHOC vs EDHOC with the
Certificate Revocation approach proposed by the research in chapter 5

Figure 6.6: Comparison of the total time taken to run a complete exchange of Plain EDHOC vs EDHOC with
the Certificate Revocation approach proposed by the research in chapter 5

Figure 6.6 shows 20 iterations of running plain EDHOC and EDHOC with the proposed
Certificate Revocation approach, the plot shows the total time required for a complete EDHOC
exchange for each iteration. Looking at the two box plots; it can be observed that the total time
taken for a complete EDHOC exchange when running EDHOC with the Certificate Revocation
approach proposed by the research is 29% more than that of when running plain EDHOC.
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Plain EDHOC EDHOC with Certificate Revocation (This research)

≈ 4.2(Watts) ≈ 5.46(Watts)

Table 6.4: Total Power Consumption when running plain EDHOC vs EDHOC with the Certificate Revocation
approach proposed by the research

Utilizing the results of both box plots; the total power consumption of running EDHOC
on the constrained client side with certificate revocation vs plain EDHOC can be calculated.
Table 6.4 compares the total power consumption in both cases, the values were calculated by
multiplying the mean value of 20 measurements of average power consumption in both cases
by the mean value of 20 measurements of total time taken to complete the EDHOC exchange
in each case.

6.3 Discussion
The section will firstly discuss the Experiment results presenting some insights around the
reasoning behind the results, the text will then present some notes on the proposed Lightweight
Profile surrounding the profiling and the acquired message sizes. Lastly the section will discuss
the overhead incurred on the constrained initiator when performing Certificate Revocation
using the approach presented in the research.

Looking at the experiment results, the difference in average power consumption between the
two cases is very small. The research expected the difference to be larger to account for the ex-
tra signature verification process (verifying the signature of the staple in staple-response)
performed on the constrained client, the research believes that the difference is small as the
time taken to perform the signature verification is not long enough to affect the average power
consumption measurement, therefore the difference between the two cases only shows up as a
small value.

The difference in total time of the protocol can be explained, there are many factors that can
affect the total time taken for a complete exchange in the case of using the proposed method
for revocation. After the non-constrained responder receives the staple-request EAD item
in EDHOC message 1, it first processes the request and then performs an OCSP request. Pro-
cessing time and round trip time of the OCSP request is to be added to the total time of the
protocol. Then sending and receiving EDHOC Message 2 which includes staple-response
would also increase the total time, lastly the signature verification would contribute to increas-
ing the total time, but from the acquired average power consumption results; it would seem
that the signature verification only contributes a small portion to the increase in the total time
of the protocol.

The proposal uses EAD items for transporting the request and response regarding revocation
information. The size of the staple-request EAD item is only 4 bytes in the case of a Null
responderID_list, the size can grow significantly if responderID_list is not Null, the
growth would be determined by the structure used to store responderID_list.

Negative signed label
(1 byte)

CBOR encoding of staple-response into
EAD_value(3 bytes) staple-response (274 bytes) EDHOC

Message 2 (≈ 350 bytes)

Table 6.5: Total size of the proposed lightweight profile after appending the signature and encoding
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Table 6.5 shows the overhead incurred by the use of the EAD field in the EDHOC Messages.
The staple-response bytestring has a total size of 274 bytes, constructing the EAD item
adds 2 bytes to encode the staple-response bytestring and 1 byte for the signed integer
label, creating a total size of 277 bytes for the EAD item. Accordingly the size of EDHOC Mes-
sage 2 goes up to around 700 bytes when using EDHOC with X.509 certificates and signature
Elliptic-curve Diffie-Hellman (ECDH) keys. The table summarises the overhead with respect
to the size of EDHOC Message 2 when employing EDHOC with this research’s proposal for
certificate revocation.

The other source of overhead is that which is incurred on the constrained initiator itself,
as the constrained initiator must verify the signature on the Staple (OCSP response). The con-
strained initiator is already assumed to be able to verify ECDSA signatures as this functionality
is one of the prerequisites to running EDHOC in this configuration. The overhead is intro-
duced with this additional signature verification on the OCSP response(Staple) which is then
considered to be on the application layer as EAD items and the processing of them is opaque
to EDHOC as previously mentioned. The OCSP responder is configured to signs OCSP re-
sponses using ECDSA P-256. The EDHOC implementation employed [28] by the research uses
Mbed TLS as a TLS/SSL toolset, accordingly it uses the latter for signature verification. The
nRF board contains a crypto cell CC310, but there’s currently no support for using CC310 to
accelerate Mbed TLS.

Running the proposed approach on a microcontroller with a different crypto cell could prob-
ably yield better results in terms of time taken for signature verification, although it is unclear
if the observed total protocol time increase is only due to larger message sizes or if it is also
the time required for signature verification of the OCSP response staple, and constructing and
processing the introduced EAD items in EDHOC.

6.4 Conclusion
The proposed solution for certificate revocation in resource constrained environments success-
fully utilizes standard protocols to achieve the revocation functionality. By specifying the inte-
gration vector for the lightweight OCSP profile and using EAD items in EDHOC in a manner
non intrusive to the protocol, the proposed changes maintain the current functionality of the
latter and the integrity of the security mechanisms in place. Setting up the Experiment and
measurement with constrained configurations shows the potential of the proposed method to
handle the challenges imposed by resource constrained environments. The research specifies
security considerations for its proposal, accordingly maintaining the security of the certificate
revocation process.

The comparison of message sizes in subsection 6.2.1 concludes that the Lightweight OCSP
profile proposed by the research delivers a a reduction of ≈ 76.2% of the size of the current
profile of the OCSP response, while delivering the certificate revocation information and main-
taining the integrity of the protocol’s security.

The proposed certificate revocation approach utilizing EDHOC and OCSP Stapling proves
to build a solid foundation for certificate revocation in IoT, with the approach being tested on a
microcontroller in a resource constrained setting, the overhead in terms of power consumption
on the microcontroller’s side was calculated to be a 30% increase in total power consump-
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tion with respect to running plain EDHOC(EDHOC without Certificate Revocation), the 30%
increase corresponds to 1.26 Watts when running EDHOC initiator on an nRF52840DK over
6LoWPAN.

This research work was presented in the IETF 115 meeting under the LAKE working group,
the meeting concluded with a recommendation from the chairs of the working group to write
an internet draft outlining the Certificate Revocation method proposed by this research. Ad-
ditionally, a paper discussing the proposed method is being drafted at the time of writing this
text.

6.5 Future work
Performing extensive power profiling of the proposed method in terms of analysing the sig-
nature verification process of the staple individually, and analysing the processing of the pro-
posed EAD items and their inclusion into the EDHOC messages would give insight to potential
vectors for decreasing the overhead of the certificate revocation process.

The proposed solution is independent of the hardware platform used, profiling the perfor-
mance on different microcontrollers that utlize different crypto chips would yield interesting
results that would contribute to the scientific body of the research surrounding the topic.

Widening the scope by looking into neighbouring communication scenarios would be a good
approach, for example; a scenario that considers two constrained nodes trying to establish a
session would be interesting in terms of its requirements and security considerations.
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Appendix A
1 Function implementation for converting the OCSP response

to the Lightweight Profile proposed by the research
Listing 1 will show the function implemented for converting the OCSP response to the lightweight
profile proposed by the research, according to the design presented in chapter 4.

Listing 1: Function for converting to the Lightweight Profile proposed by the research

1 /*OCSP_RESPONSE* resp: The OCSP response in ASN.1 structure
2 X509* issuer: the CA certificate
3 char* rkeyfile: OCSP responder key file
4 X509 *cert: The client certificate
5 */
6 /*The function performs the conversion from the OCSP response to the lightweight

profile proposed by the research*/
7 /*The function returns a pointer to bytestring included the lightweight profiled

response*/
8

9 uint8_t *OCSP_convert_to_tiny(OCSP_RESPONSE* resp, X509* issuer, char* rkeyfile,
X509 *cert)

10 {
11 OCSP_BASICRESP *bs = NULL;
12 EVP_MD *cert_id_md = NULL;
13 const ASN1_OCTET_STRING *pid;
14 const X509_NAME *pname;
15 int status;
16 int reason;
17 ASN1_GENERALIZEDTIME *revtime;
18 ASN1_GENERALIZEDTIME *thisupd;
19 ASN1_GENERALIZEDTIME *nextupd;
20 const ASN1_GENERALIZEDTIME *producedat;
21 EVP_PKEY *rkey = NULL;
22 EVP_MD_CTX *mdctx = NULL;
23 char *passinarg=NULL, *passin=NULL;
24 uint8_t *sig;
25

26 STACK_OF(X509) *issuers = NULL;
27

28

29

30 //Certificate paths //in a refactor these should be passed by the
application
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31 char *CAfile="/usr/lib/ssl/demoCA/certs/ca.pem";
32 char *respkeyfile="/usr/lib/ssl/ocsp_ec.key";
33 char *client_certfile="/usr/lib/ssl/client.pem";
34

35 cert = load_cert(client_certfile, FORMAT_UNDEF, "certificate");
36 if (cert == NULL)
37 {
38 printf("failed to load client cert\n");
39 return NULL;
40 }
41

42 issuer = load_cert(CAfile, FORMAT_UNDEF, "issuer certificate");
43 if (issuer == NULL)
44 return NULL;
45 if (issuers == NULL) {
46 if ((issuers = sk_X509_new_null()) == NULL)
47 return NULL;
48 }
49 //add issuer to issuers stack
50 if (!sk_X509_push(issuers, issuer))
51 return NULL;
52

53

54 if (issuers == NULL) {
55 if ((issuers = sk_X509_new_null()) == NULL)
56 return NULL;
57 }
58 //add issuer to issuers stack
59 if (!sk_X509_push(issuers, issuer))
60 return NULL;
61 unsigned long verify_flags;
62 verify_flags |= OCSP_TRUSTOTHER;
63

64 if (cert_id_md == NULL)
65 cert_id_md = (EVP_MD *)EVP_sha1();
66 char* outfile=NULL;
67 BIO* out;
68

69

70 //OCSP_response_get1_basic() decodes and returns the OCSP_BASICRESP
structure contained in resp.

71 bs = OCSP_response_get1_basic(resp);
72 if (bs == NULL) {
73 printf("failed to parse response\n");
74 return NULL;
75 }
76 OCSP_CBOR_RESPONSE *tiny_resp;
77 tiny_resp=tiny_response_item(); //get ptr to cbor struct
78

79

80 const OCSP_BASICRESP* bs_const=bs;
81
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82 //get responderID---------------------
83 int err= OCSP_resp_get0_id(bs_const,&pid,&pname);
84 if(!err)
85 return NULL;
86 char *name=X509_NAME_oneline(pname, NULL, 0);
87 tiny_resp->responderID= malloc(strlen(name)+2); //+2 bytes for cbor encoding
88 uint8_t *temp=tiny_resp->responderID;
89 *temp=one_byte_n_bs;
90 temp++;
91 *temp=strlen(name);
92 temp++;
93 string2ByteArray (name,temp);
94

95

96 //get client id------------------------------------
97 STACK_OF(X509) *resp_certs;
98 OCSP_CERTID *client_id = OCSP_cert_to_id(cert_id_md, cert, issuer);
99 ASN1_OCTET_STRING *piNameHash; ASN1_OBJECT *pmd; ASN1_OCTET_STRING *

pikeyHash; ASN1_INTEGER *pserial;
100 OCSP_id_get0_info(&piNameHash,&pmd,&pikeyHash,&pserial,client_id);
101 int serial_len= pserial->length;
102 temp=tiny_resp->certID.sn;
103 *temp=BS_SMALL+serial_len;
104 temp++;
105 memcpy(temp, pserial->data, serial_len);
106

107 temp=tiny_resp->certID.issuer_kh;
108 *temp=BS_SMALL+sha_1_hsize;
109 temp++;
110 memcpy(temp, pikeyHash->data, sha_1_hsize);
111

112 temp=tiny_resp->certID.issuer_h;
113 *temp=BS_SMALL+sha_1_hsize;
114 temp++;
115

116 memcpy(temp, piNameHash->data, sha_1_hsize);
117

118 tiny_resp->certID.hashAlg=1;
119

120 // get certStatus--------------------------------------------
121 if(!OCSP_resp_find_status(bs, client_id, &status,
122 &reason,
123 &revtime,
124 &thisupd,
125 &nextupd))
126 return NULL;
127 if (status==V_OCSP_CERTSTATUS_GOOD) //the status is an integer constant and

the pointer just points to one of them
128 {
129 tiny_resp->certStatus=good_cert;
130

131 }
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132 else if(status==V_OCSP_CERTSTATUS_REVOKED)
133 {
134 tiny_resp->certStatus=revoked_cert;
135 }
136 //-----------------------------------------------------------
137

138 //get producedAt
139

140 producedat= OCSP_resp_get0_produced_at(bs);
141 struct tm producedat_struct;
142 err=ASN1_TIME_to_tm(producedat,&producedat_struct);
143

144

145 if (!err)
146 return NULL;
147

148 outfile=malloc(25);
149 sprintf(outfile,"%04d-%2d-%02dT%02d:%02d:%02dZ",producedat_struct.tm_year

+1900,producedat_struct.tm_mon+1,producedat_struct.tm_mday,
producedat_struct.tm_hour,producedat_struct.tm_min,producedat_struct.
tm_sec);

150

151 tiny_resp->producedat= malloc(22);
152 temp=tiny_resp->producedat;
153 *temp=TAG_ZERO;
154 temp++;
155 *temp=strlen(outfile)+TEXT_TAG;
156 temp++;
157 string2ByteArray (outfile,temp);
158

159 //get nonce-------------------------------------------------
160 int resp_idx;
161 X509_EXTENSION *resp_ext;
162 //get idx for nonce
163 resp_idx = OCSP_BASICRESP_get_ext_by_NID(bs, NID_id_pkix_OCSP_Nonce, -1);
164 resp_ext = OCSP_BASICRESP_get_ext(bs, resp_idx); //get the extension
165 //get the octet string
166 ASN1_OCTET_STRING *resp_nonce;
167 resp_nonce=X509_EXTENSION_get_data(resp_ext);
168 uint8_t *nonce_charString =resp_nonce->data;
169 // int nonce_len= resp_nonce->length;
170 temp=tiny_resp->nonce;
171 *temp=one_byte_n_bs;
172 temp++;
173 *temp=noncesize;
174 temp++;
175 memcpy(temp, nonce_charString+2, noncesize); //+2 to remove previous

encoding
176

177 //add response type (this is just an arbitrary value for this scope)
178 tiny_resp->responseType=1;
179
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180 //we need to allocate 200 bytes mem for our responseData
181 uint8_t * responseData=malloc(responseData_size); //remember to free all my

mallocs
182 size_t responseData_len=0;
183

184 // response_type: unsigned int
185 uint8_t *walk=responseData+2; //walk is gonna traverse //leave two bytes for

bytestring encoding
186

187 *walk=tiny_resp->responseType; //we know that’s 1 byte representable
188 walk++; //increment ptr
189 responseData_len++;
190

191 // responderID: byteString
192 memcpy(walk,tiny_resp->responderID,strlen(tiny_resp->responderID));
193 walk+=strlen(tiny_resp->responderID); //move len respID bytes
194 responseData_len+=strlen(tiny_resp->responderID);
195

196

197 // producedAt: time with tag 0
198 memcpy(walk,tiny_resp->producedat,strlen(tiny_resp->producedat));
199 walk+=strlen(tiny_resp->producedat);
200 responseData_len+=strlen(tiny_resp->producedat);
201

202

203 // nonce: bytestring
204 memcpy(walk,tiny_resp->nonce,sizeof(tiny_resp->nonce));
205 walk+=sizeof(tiny_resp->nonce);
206 responseData_len+=sizeof(tiny_resp->nonce);
207

208 // certID: CBOR map
209 *walk=CBOR_ARRAY+4; //add array encoding for 4 items
210 walk++;
211 responseData_len++;
212 *walk=tiny_resp->certID.hashAlg;
213 walk++;
214 responseData_len++;
215 memcpy(walk,tiny_resp->certID.issuer_h,sizeof(tiny_resp->certID.issuer_h));
216 walk+=sizeof(tiny_resp->certID.issuer_h);
217 responseData_len+=sizeof(tiny_resp->certID.issuer_h);
218 memcpy(walk,tiny_resp->certID.issuer_kh,sizeof(tiny_resp->certID.issuer_kh))

;
219 walk+=sizeof(tiny_resp->certID.issuer_kh);
220 responseData_len+=sizeof(tiny_resp->certID.issuer_kh);
221 memcpy(walk,tiny_resp->certID.sn,sizeof(tiny_resp->certID.sn));
222 walk+=sizeof(tiny_resp->certID.sn);
223 responseData_len+=sizeof(tiny_resp->certID.sn);
224

225 // cert status: unsigned int
226 *walk=tiny_resp->certStatus;
227 walk++;
228 responseData_len++;
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229

230 //add byte string encoding so that you sign the length of the response as
well

231 walk=responseData; //go to head
232 *walk=one_byte_n_bs;
233 walk++;
234 *walk=responseData_len;
235

236 //Sign responseData
237

238 rkey = load_key(respkeyfile, FORMAT_UNDEF, 0, passin, NULL,
239 "responder private key");
240 if (rkey == NULL) printf("Failed to load rkey!!\n");
241

242 /* Create the Message Digest Context */
243 if(!(mdctx = EVP_MD_CTX_create())) printf("Failed to create Message Digest

Context\n");
244 /* Initialise the DigestSign operation - SHA-256 has been selected as the

message digest function in this example */
245 if(1 != EVP_DigestSignInit(mdctx, NULL, EVP_sha256(), NULL, rkey)) printf("

Failed to initialise signing op\n");
246 /* Call update with the message */
247 if(1 != EVP_DigestSignUpdate(mdctx, responseData, responseData_len+2))

printf("Signing Failed!\n"); //+2 to include cbor bytestring encoding
248 /* Finalise the DigestSign operation */
249 /* First call EVP_DigestSignFinal with a NULL sig parameter to obtain the

length of the
250 * signature. Length is returned in slen */
251 size_t slen=0;
252 if(1 != EVP_DigestSignFinal(mdctx, NULL, &slen)) printf("failed to get

signatureLen\n");
253 // printf("Signature Length:%ld\n",slen); //72 bytes because DER encoding

adds 8 bytes
254 //mbedtls also deals with DER encoded signatures
255 /* Allocate memory for the signature based on size in slen */
256 if(!(sig = malloc(slen+2))) printf("Failed to allocate mem for sig\n"); //+2

for bytestring encoding
257 /* Obtain the signature */
258 uint8_t *sig_noenc=sig;
259 sig_noenc+=2; //leave room for encoding
260 if(1 != EVP_DigestSignFinal(mdctx, sig_noenc, &slen)) printf("Failed to

obtain signature value\n");
261 sig_noenc=sig;
262 *sig_noenc=one_byte_n_bs; //byte string header
263 sig_noenc++;
264 *sig_noenc=slen;
265

266

267

268

269 size_t tinyresp_total_len=2+2+responseData_len+2+slen+1;
270
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271 uint8_t *signed_tinyResponse=malloc(tinyresp_total_len); //total_len[2]-
cborBytestring_header[2]-responseData[responseData_len]-
cborBytestring_header[2]-signature[slen]+sigAlg[1]

272 walk=signed_tinyResponse;
273 uint16_t *walk_16;
274 walk_16=(uint16_t*)signed_tinyResponse;
275 *walk_16=tinyresp_total_len;
276 walk+=2;
277 memcpy(walk,responseData,responseData_len+2);
278 walk=walk+2+responseData_len;
279 memcpy(walk,sig,slen+2);
280 walk=walk+2+slen;
281 *walk=3; //some label for the sigalg
282

283

284

285 return signed_tinyResponse; //bytestring
286

287 }
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2 Example of the lightweight profiled OCSP Response
Figure 1 shows an example of a lightweight profiled OCSP Response, the figure contains the CBOR
encodings of each header in the lightweight profile of the OCSP response proposed by the research
in chapter 4. Tiny Response including ECDSA-p256 Signature contains the complete re-
sponse structure after the concatenation of all the listed headers in the figure. issuerKeyHash,
issuerHash and hashAlg and Serial are encoded as a CBOR array and named certID.

responderID:58 5c 2f 43 3d 53 45 2f 53 54 3d 53 74 6f 63 6b 68 6f 6c 6d 2f 4f 3d
45 44 48 4f 43 2d 4f 43 53 50 2f 4f 55 3d 45 44 48 4f 43 2d 4f 43 53 50 2f 43 4e
3d 44 65 6d 70 2d 4f 43 53 50 5f 45 43 2f 65 6d 61 69 6c 41 64 64 72 65 73 73 3d
45 44 48 4f 43 2d 4f 43 53 50 40 69 6f 2e 63 6f 6d
Serial:42 10 02
issuerKeyHash:54 a1 76 fa 31 49 b9 e1 c9 f6 40 08 6e 4a 65 0e 30 dc 31 45 62
issuerHash:54 90 c2 48 eb 88 1a ad 4c 41 e5 f8 a8 62 cc cd 1f c2 46 ca 7b
hashAlg:1
certStatus:1 (Good)
producedAt:c0 74 32 30 32 33 2d 20 31 2d 30 33 54 30 30 3a 33 31 3a 35 36 5a
nonce:58 20 8a f6 f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34 73 0b
96 c1 b7 c8 db ca 2f c3 b6
responseData:58 c7 01 58 5c 2f 43 3d 53 45 2f 53 54 3d 53 74 6f 63 6b 68 6f 6c
6d 2f 4f 3d 45 44 48 4f 43 2d 4f 43 53 50 2f 4f 55 3d 45 44 48 4f 43 2d 4f 43 53
50 2f 43 4e 3d 44 65 6d 70 2d 4f 43 53 50 5f 45 43 2f 65 6d 61 69 6c 41 64 64 72
65 73 73 3d 45 44 48 4f 43 2d 4f 43 53 50 40 69 6f 2e 63 6f 6d c0 74 32 30 32 33
2d 20 31 2d 30 33 54 30 30 3a 33 31 3a 35 36 5a 58 20 8a f6 f4 30 eb e1 8d 34 18
40 17 a9 a1 1b f5 11 c8 df f8 f8 34 73 0b 96 c1 b7 c8 db ca 2f c3 b6 84 01 54 90
c2 48 eb 88 1a ad 4c 41 e5 f8 a8 62 cc cd 1f c2 46 ca 7b 54 a1 76 fa 31 49 b9 e1
c9 f6 40 08 6e 4a 65 0e 30 dc 31 45 62 42 10 02 01
SignatureVal:58 47 30 45 02 20 62 83 0b 07 04 75 49 c3 2d 4c ec 18 84 a7 a4 47
16 3b 71 d9 77 48 8a 58 4a eb 4d 7a aa 61 73 52 02 21 00 a2 15 ae 12 b3 c0 d1 15
bf 06 a9 d1 c6 05 90 6c bd b0 b0 22 1b c8 14 6d b4 24 af 4a e5 4e b3 d6
Full concatenation of all the previous gives the complete bytestring:
Lightweight Profiled OCSP Response:58 c7 01 58 5c 2f 43 3d 53 45 2f 53 54 3d 53
74 6f 63 6b 68 6f 6c 6d 2f 4f 3d 45 44 48 4f 43 2d 4f 43 53 50 2f 4f 55 3d 45 44
48 4f 43 2d 4f 43 53 50 2f 43 4e 3d 44 65 6d 70 2d 4f 43 53 50 5f 45 43 2f 65 6d
61 69 6c 41 64 64 72 65 73 73 3d 45 44 48 4f 43 2d 4f 43 53 50 40 69 6f 2e 63 6f
6d c0 74 32 30 32 33 2d 20 31 2d 30 33 54 30 30 3a 33 31 3a 35 36 5a 58 20 8a f6
f4 30 eb e1 8d 34 18 40 17 a9 a1 1b f5 11 c8 df f8 f8 34 73 0b 96 c1 b7 c8 db ca
2f c3 b6 84 01 54 90 c2 48 eb 88 1a ad 4c 41 e5 f8 a8 62 cc cd 1f c2 46 ca 7b 54
a1 76 fa 31 49 b9 e1 c9 f6 40 08 6e 4a 65 0e 30 dc 31 45 62 42 10 02 01 58 47 30
45 02 20 62 83 0b 07 04 75 49 c3 2d 4c ec 18 84 a7 a4 47 16 3b 71 d9 77 48 8a 58
4a eb 4d 7a aa 61 73 52 02 21 00 a2 15 ae 12 b3 c0 d1 15 bf 06 a9 d1 c6 05 90 6c
bd b0 b0 22 1b c8 14 6d b4 24 af 4a e5 4e b3 d6 03

Figure 1: An example of an OCSP response with the Lightweight profile
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1 Function implementation for parsing staple-request and

performing an lightweight profiled OCSP request using the
functions implemented by the research

Listing 1 will show the function implemented for converting the OCSP response to the lightweight
profile proposed by the research, according to the design presented in chapter 5.

Listing 1: Function for processing staple-request, performing an lightweight profiled OCSP request and con-
structing staple-response in EAD_2

1 //Application can implement this function to process EAD_1 and act on the
protocol state

2 enum err process_ead_1(struct edhoc_responder_context *c, uint8_t *ead_1,
uint32_t *ead_1_len, uint8_t *g_x, uint32_t g_x_len )

3 {
4 printf("processing ead 1!\n");
5 PRINT_ARRAY("msg1 ead_1", ead_1, *ead_1_len);
6 uint8_t *walk=ead_1;
7 bool _nonce;
8

9

10 //We won’t implement a generic parser at this point
11 if(*walk==STAPLE_REQUEST_LABEL)
12 {
13 uint8_t *tinyOCSP_response_staple= (uint8_t*)malloc(AD_DEFAULT_SIZE+64);
14 walk++; //pointing at ead_value head now
15 //create pointers for responder ID list and optional nonce include
16 uint8_t *responderIdList, *nonce_option;
17 printf("Received tinyOCSP stapling request.\n");
18 //parse staple request in EAD Value
19 TRY(parse_stapleRequest_ead_1_value(&walk, &responderIdList, &nonce_option))

; //update pointers here
20 if (nonce_option!=NULL)
21 {
22 printf("{stapleRequestLabel:-2,ResponderIdList:NULL,Nonce:True}\n");
23 _nonce=true;
24 }
25 else
26 printf("{stapleRequestLabel:-2,ResponderIdList:NULL}\n");
27

28

29 if (_nonce)

71
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30 {
31 //create the request appending g_x as nonce
32 PRINT_ARRAY("Performing tinyOCSP request with (g_x) as nonce:",g_x,g_x_len

);
33 //here we call our generate ocsp request function which request

the lightweight profiled ocsp response
34 if(generate_ocsp_request(&tinyOCSP_response_staple, g_x, g_x_len))
35 printf("Received tinyOCSP response, can now construct staple for EAD_2\n

");
36 else
37 return error_message_sent;
38 }
39

40

41 //Encoding the staple and constructing staple-response in EAD 2
42 uint8_t *size_ptr=tinyOCSP_response_staple;
43 uint32_t tinyOCSP_response_staple_len=size_ptr[0]+((size_ptr[1]&0xf0)*4096)

+((size_ptr[1]&0x0f)*256)-2; //remove length
44 printf("response staple len= %d\n",tinyOCSP_response_staple_len);
45 //add length of ead_value byteString
46 //add staple request label 0x21
47 size_ptr=(uint8_t*)&tinyOCSP_response_staple_len;
48 uint32_t ead_len_encoding=size_ptr[0]+((size_ptr[1]&0xf0)*4096)+((size_ptr

[1]&0x0f)*256);
49 size_ptr=(uint8_t*)&ead_len_encoding;
50 uint8_t *temp=c->ead_2.ptr;
51 memcpy(c->ead_2.ptr+7, tinyOCSP_response_staple+2,

tinyOCSP_response_staple_len); //3 for EAD len encoding and 2 for label
and ead value encoding

52 *(temp+6) =size_ptr[0];
53 *(temp+5) =size_ptr[1];
54 *(temp+4) =0x59;
55 *(temp+3) =0x21;
56 uint16_t ead_2_len=tinyOCSP_response_staple_len+4;
57 size_ptr=(uint8_t*)&ead_2_len;
58 *(temp+2) =size_ptr[0];
59 *(temp+1) =size_ptr[1];
60 *temp = 0x59;
61 uint16_t ead_2_len_enc=ead_2_len+3;
62 //[ead_len_encoding(3)][label(1)][staple_len_encoding(3)[staple]
63 // memcpy(c->ead_2.ptr+4,&0x59,1);
64 // memcpy(c->ead_2.ptr+3,&0x21,1);
65 //last memcpy to add total size of ead
66 free(tinyOCSP_response_staple);
67 c->ead_2.len=ead_2_len_enc;
68 PRINT_ARRAY("EAD_2",c->ead_2.ptr,c->ead_2.len);
69

70

71 }
72

73 return ok;
74 }
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